(6x+8x)8x=(9+7)7

Simple and best practice solution for (6x+8x)8x=(9+7)7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x+8x)8x=(9+7)7 equation:



(6x+8x)8x=(9+7)7
We move all terms to the left:
(6x+8x)8x-((9+7)7)=0
We add all the numbers together, and all the variables
(+14x)8x-(167)=0
We add all the numbers together, and all the variables
(+14x)8x-167=0
We multiply parentheses
112x^2-167=0
a = 112; b = 0; c = -167;
Δ = b2-4ac
Δ = 02-4·112·(-167)
Δ = 74816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{74816}=\sqrt{64*1169}=\sqrt{64}*\sqrt{1169}=8\sqrt{1169}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1169}}{2*112}=\frac{0-8\sqrt{1169}}{224} =-\frac{8\sqrt{1169}}{224} =-\frac{\sqrt{1169}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1169}}{2*112}=\frac{0+8\sqrt{1169}}{224} =\frac{8\sqrt{1169}}{224} =\frac{\sqrt{1169}}{28} $

See similar equations:

| 8=y–2+ 10 | | 7x–12=3x+46 | | 6x+-9=7x+5 | | x^2+16x–9=0 | | -12+x/4=6 | | 280=-5t2 | | (x+10)(104)=180 | | a/2=5=25 | | x(8x+4)=0 | | 150-1.5x=2.5x | | 2(x+1)^(3/2)=-54 | | s/4− 2=1 | | (4/3)x=(10/3) | | –13=r/3− 17 | | y=2×+44 | | v/3+ 7=10 | | –w=–4−5w | | 8x(8+7)=120 | | 2(x-4)=-4+10 | | 8x^2+13-19=4x-11 | | 3t4=40 | | −12=4+7x+9x | | 4(1+5x)=6+2(12+x)+4x | | 4xX+31=75 | | 4x(3x6)=(4x)x6 | | 3(-5)-8y=1 | | 4(x+8-4=15x+6 | | 6p×(–2)=144 | | 3∛(2x+6)=18 | | 8+9g=–9g−10 | | 4x-x=3x3x | | `9000x^{2}-6000x-15000=0` |

Equations solver categories