If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6x + -1)(6x + -1) = 0 Reorder the terms: (-1 + 6x)(6x + -1) = 0 Reorder the terms: (-1 + 6x)(-1 + 6x) = 0 Multiply (-1 + 6x) * (-1 + 6x) (-1(-1 + 6x) + 6x * (-1 + 6x)) = 0 ((-1 * -1 + 6x * -1) + 6x * (-1 + 6x)) = 0 ((1 + -6x) + 6x * (-1 + 6x)) = 0 (1 + -6x + (-1 * 6x + 6x * 6x)) = 0 (1 + -6x + (-6x + 36x2)) = 0 Combine like terms: -6x + -6x = -12x (1 + -12x + 36x2) = 0 Solving 1 + -12x + 36x2 = 0 Solving for variable 'x'. Factor a trinomial. (1 + -6x)(1 + -6x) = 0Subproblem 1
Set the factor '(1 + -6x)' equal to zero and attempt to solve: Simplifying 1 + -6x = 0 Solving 1 + -6x = 0 Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -6x = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -6x = 0 + -1 -6x = 0 + -1 Combine like terms: 0 + -1 = -1 -6x = -1 Divide each side by '-6'. x = 0.1666666667 Simplifying x = 0.1666666667Subproblem 2
Set the factor '(1 + -6x)' equal to zero and attempt to solve: Simplifying 1 + -6x = 0 Solving 1 + -6x = 0 Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -6x = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -6x = 0 + -1 -6x = 0 + -1 Combine like terms: 0 + -1 = -1 -6x = -1 Divide each side by '-6'. x = 0.1666666667 Simplifying x = 0.1666666667Solution
x = {0.1666666667, 0.1666666667}
| x^3+3x^2+4x-8=0 | | (16x-2x-2)/(4x-1) | | (5/2n+1)+(3/2n-1)=22/4n^2-1 | | 2x+4x+5=35 | | -8y-1=-7y-2 | | x^2+11x-49=4x-5 | | 2n-6=5n+24 | | c^16/k^16*16c^8/k^16 | | 2x/x-2+x/x+4=-(5)/(x+4) | | 1=7x+15 | | 4x*2y=0 | | x^2-2x-1=7 | | 46-4x=14x+22 | | 1/2+17/9 | | x^(2/3)=36 | | 6x-3x=5x-10x+4 | | 6x-3x=5x-10+4 | | 65x=156 | | (8-u)(4u-3)=0 | | 4x^2-25x+23=-9x+8 | | 30-2n=4m | | x=54/120 | | 5(2x-1)=2(x+1) | | 65x=39 | | 1.2x=50 | | 2x+3-5x=6 | | 19x+14=20x-14 | | 6x^2-4x+3/3x+4+4x^2+1/3x+4 | | (4x+3y)(2x-8y)= | | 19y^2+32y-10=0 | | 2x+4+6x-x-4=8x-2+4x | | 3x+1=2x+21 |