(6x-1/x+3)=2x+1

Simple and best practice solution for (6x-1/x+3)=2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-1/x+3)=2x+1 equation:



(6x-1/x+3)=2x+1
We move all terms to the left:
(6x-1/x+3)-(2x+1)=0
Domain of the equation: x+3)!=0
x∈R
We get rid of parentheses
6x-1/x-2x+3-1=0
We multiply all the terms by the denominator
6x*x-2x*x+3*x-1*x-1=0
We add all the numbers together, and all the variables
2x+6x*x-2x*x-1=0
Wy multiply elements
6x^2-2x^2+2x-1=0
We add all the numbers together, and all the variables
4x^2+2x-1=0
a = 4; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·4·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*4}=\frac{-2-2\sqrt{5}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*4}=\frac{-2+2\sqrt{5}}{8} $

See similar equations:

| x-11=16-4x | | -16-15g=-13g+20 | | 1/a+1/a-2=2/a+1 | | 4(x-8)=5(x+2) | | x4-119x+222=0 | | 8x+8=4×+72 | | (3x-1)/2-(5x+3)/3=x-1 | | 20-18z+8z=-8z-20 | | 6x+8-3x=3x+27 | | 8x+8=4×=72 | | -15b=-4 | | 1/2x+3/4*3=7 | | 6x-1/x+3=2x+1 | | 6x+8+3x=3(x+9) | | 3x-1/2-5x+3/3=x-1 | | 8t+18=5t-19+1 | | 1.666666666666667x+.75=0.307692307692308 | | Y-4y-5=0 | | 3-0.5x=5 | | 5x−1=6x−9 | | 5/3x+1/3=3x+33/3+8/3x | | 9+7m=1+2+6m | | 2d=6/15 | | 26+x=71 | | 3x−4=11 | | 5c–9=8–2c | | 1/2x-2/5=5 | | 3x-35+2x=5(x-7) | | y^2=900 | | 228+.2x=x | | 5t+10−=4−2t | | 2(1-m)=8-4m |

Equations solver categories