If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6x + -5)(6x + -7) = 0 Reorder the terms: (-5 + 6x)(6x + -7) = 0 Reorder the terms: (-5 + 6x)(-7 + 6x) = 0 Multiply (-5 + 6x) * (-7 + 6x) (-5(-7 + 6x) + 6x * (-7 + 6x)) = 0 ((-7 * -5 + 6x * -5) + 6x * (-7 + 6x)) = 0 ((35 + -30x) + 6x * (-7 + 6x)) = 0 (35 + -30x + (-7 * 6x + 6x * 6x)) = 0 (35 + -30x + (-42x + 36x2)) = 0 Combine like terms: -30x + -42x = -72x (35 + -72x + 36x2) = 0 Solving 35 + -72x + 36x2 = 0 Solving for variable 'x'. Factor a trinomial. (5 + -6x)(7 + -6x) = 0Subproblem 1
Set the factor '(5 + -6x)' equal to zero and attempt to solve: Simplifying 5 + -6x = 0 Solving 5 + -6x = 0 Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + -6x = 0 + -5 Combine like terms: 5 + -5 = 0 0 + -6x = 0 + -5 -6x = 0 + -5 Combine like terms: 0 + -5 = -5 -6x = -5 Divide each side by '-6'. x = 0.8333333333 Simplifying x = 0.8333333333Subproblem 2
Set the factor '(7 + -6x)' equal to zero and attempt to solve: Simplifying 7 + -6x = 0 Solving 7 + -6x = 0 Move all terms containing x to the left, all other terms to the right. Add '-7' to each side of the equation. 7 + -7 + -6x = 0 + -7 Combine like terms: 7 + -7 = 0 0 + -6x = 0 + -7 -6x = 0 + -7 Combine like terms: 0 + -7 = -7 -6x = -7 Divide each side by '-6'. x = 1.166666667 Simplifying x = 1.166666667Solution
x = {0.8333333333, 1.166666667}
| x=loge^2 | | 12y-12x-(-13y-65x)= | | 4100=4000n-500 | | -113+5x=118-6x | | 12-m=5m-6 | | 5.6=2.3+3z | | 0=-16x^2+24x+160 | | 2.5x+.45=.95 | | ab-5ab+15ab= | | 18+4m=50 | | x^2+12x=37x+150 | | 1470+7(s-30)=4300 | | 6-9x=5x-9x+11 | | -2(-m)(-n)= | | 6x^4-x^3-32x^2+5x+10=0 | | 1470+7(s-30)=2150 | | 12q-32=16 | | (18z+29c+46e+65v)-(-37-56c-89e+56v)= | | 10t-2(3+7t)=10 | | 23=7m+2 | | 9x+9y=-117 | | 15+5r=37 | | 5x+6x-15=30-4x | | 2w-1=3w-3 | | 8y-3=5y+18 | | 8*6=14+x | | -36+3x=6 | | 48-2x=8x-18 | | -3b=b+4-3b | | 3x+50=6x+40 | | 8a-4=-10+50 | | 5-13z=-(z-1) |