(6x/36)+((5/15)x)=62

Simple and best practice solution for (6x/36)+((5/15)x)=62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x/36)+((5/15)x)=62 equation:



(6x/36)+((5/15)x)=62
We move all terms to the left:
(6x/36)+((5/15)x)-(62)=0
Domain of the equation: 15)x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+6x/36)+((+5/15)x)-62=0
We get rid of parentheses
6x/36+((+5/15)x)-62=0
We calculate fractions
90x^2/540x+()/540x-62=0
We multiply all the terms by the denominator
90x^2-62*540x+()=0
We add all the numbers together, and all the variables
90x^2-62*540x=0
Wy multiply elements
90x^2-33480x=0
a = 90; b = -33480; c = 0;
Δ = b2-4ac
Δ = -334802-4·90·0
Δ = 1120910400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1120910400}=33480$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33480)-33480}{2*90}=\frac{0}{180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33480)+33480}{2*90}=\frac{66960}{180} =372 $

See similar equations:

| 31=2x+8+2x-5 | | 4(2+7x)=-104 | | p+0.2p=1.2p | | 2(7x-7)=154 | | 14x-160=180 | | -8x+220=10+7x | | x-5=-2-2x | | x=45+1/5 | | 6(6-x)=96 | | 6–4x=12+2x | | 25=8x-27 | | y=36(1.15)^5 | | 15/100=x/30 | | 6q^2-4q=5q^2-9q+24 | | -5(-1x+10)=-50 | | 5(7x-6)+3=-167 | | x+3=29.4 | | y=36(1.15)^3 | | –2(x–12)=44 | | 0.50x+0.45​(50​)=24.5 | | 4(6+2x)=8 | | -323=17b | | 29=8x-27 | | 3x-x+4-4=4(2x+1) | | 20=8x-27 | | y=36(1.15)^4 | | x÷6+12=32 | | 3x=45=72=27 | | 9n+4=-59 | | 180=8x-27 | | 4(1+5x)=-16 | | 2x-16=210+7x |

Equations solver categories