(6z+7)(8z+9)=(10z+11)(12z+13)

Simple and best practice solution for (6z+7)(8z+9)=(10z+11)(12z+13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6z+7)(8z+9)=(10z+11)(12z+13) equation:


Simplifying
(6z + 7)(8z + 9) = (10z + 11)(12z + 13)

Reorder the terms:
(7 + 6z)(8z + 9) = (10z + 11)(12z + 13)

Reorder the terms:
(7 + 6z)(9 + 8z) = (10z + 11)(12z + 13)

Multiply (7 + 6z) * (9 + 8z)
(7(9 + 8z) + 6z * (9 + 8z)) = (10z + 11)(12z + 13)
((9 * 7 + 8z * 7) + 6z * (9 + 8z)) = (10z + 11)(12z + 13)
((63 + 56z) + 6z * (9 + 8z)) = (10z + 11)(12z + 13)
(63 + 56z + (9 * 6z + 8z * 6z)) = (10z + 11)(12z + 13)
(63 + 56z + (54z + 48z2)) = (10z + 11)(12z + 13)

Combine like terms: 56z + 54z = 110z
(63 + 110z + 48z2) = (10z + 11)(12z + 13)

Reorder the terms:
63 + 110z + 48z2 = (11 + 10z)(12z + 13)

Reorder the terms:
63 + 110z + 48z2 = (11 + 10z)(13 + 12z)

Multiply (11 + 10z) * (13 + 12z)
63 + 110z + 48z2 = (11(13 + 12z) + 10z * (13 + 12z))
63 + 110z + 48z2 = ((13 * 11 + 12z * 11) + 10z * (13 + 12z))
63 + 110z + 48z2 = ((143 + 132z) + 10z * (13 + 12z))
63 + 110z + 48z2 = (143 + 132z + (13 * 10z + 12z * 10z))
63 + 110z + 48z2 = (143 + 132z + (130z + 120z2))

Combine like terms: 132z + 130z = 262z
63 + 110z + 48z2 = (143 + 262z + 120z2)

Solving
63 + 110z + 48z2 = 143 + 262z + 120z2

Solving for variable 'z'.

Reorder the terms:
63 + -143 + 110z + -262z + 48z2 + -120z2 = 143 + 262z + 120z2 + -143 + -262z + -120z2

Combine like terms: 63 + -143 = -80
-80 + 110z + -262z + 48z2 + -120z2 = 143 + 262z + 120z2 + -143 + -262z + -120z2

Combine like terms: 110z + -262z = -152z
-80 + -152z + 48z2 + -120z2 = 143 + 262z + 120z2 + -143 + -262z + -120z2

Combine like terms: 48z2 + -120z2 = -72z2
-80 + -152z + -72z2 = 143 + 262z + 120z2 + -143 + -262z + -120z2

Reorder the terms:
-80 + -152z + -72z2 = 143 + -143 + 262z + -262z + 120z2 + -120z2

Combine like terms: 143 + -143 = 0
-80 + -152z + -72z2 = 0 + 262z + -262z + 120z2 + -120z2
-80 + -152z + -72z2 = 262z + -262z + 120z2 + -120z2

Combine like terms: 262z + -262z = 0
-80 + -152z + -72z2 = 0 + 120z2 + -120z2
-80 + -152z + -72z2 = 120z2 + -120z2

Combine like terms: 120z2 + -120z2 = 0
-80 + -152z + -72z2 = 0

Factor out the Greatest Common Factor (GCF), '-8'.
-8(10 + 19z + 9z2) = 0

Factor a trinomial.
-8((10 + 9z)(1 + z)) = 0

Ignore the factor -8.

Subproblem 1

Set the factor '(10 + 9z)' equal to zero and attempt to solve: Simplifying 10 + 9z = 0 Solving 10 + 9z = 0 Move all terms containing z to the left, all other terms to the right. Add '-10' to each side of the equation. 10 + -10 + 9z = 0 + -10 Combine like terms: 10 + -10 = 0 0 + 9z = 0 + -10 9z = 0 + -10 Combine like terms: 0 + -10 = -10 9z = -10 Divide each side by '9'. z = -1.111111111 Simplifying z = -1.111111111

Subproblem 2

Set the factor '(1 + z)' equal to zero and attempt to solve: Simplifying 1 + z = 0 Solving 1 + z = 0 Move all terms containing z to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + z = 0 + -1 Combine like terms: 1 + -1 = 0 0 + z = 0 + -1 z = 0 + -1 Combine like terms: 0 + -1 = -1 z = -1 Simplifying z = -1

Solution

z = {-1.111111111, -1}

See similar equations:

| X^2-24x-33=0 | | n(n-1)=80 | | 0=2x^2+13x-35 | | 7p+8=14+6p | | n-11=-15 | | (2-x)2=36 | | N*(n+1)=90 | | (w^2/-2v)^2 | | (8+z)(4z+3)=0 | | 6x-24=8x-24-2x | | 2x^5y^7+4x^5y^6= | | a+a/2-10=52 | | =29+2q^2 | | 1+2(3x+4)=x+23 | | 5/6=4/x | | (-5x+3)+2x+4=x+13 | | 8y=8+64 | | -3x-1+4(4x-2)=2x+35 | | 10+b=4-2b | | 6x-24=14+5x-34 | | 8y=0+64 | | 5/2x=1/2 | | 8y=-8+64 | | -2+4(-5x+2)=-5+59 | | 13/15=x/90 | | A=1/2bxh | | 104/190 | | 3/5-1/7 | | 14/17=x/85 | | x^3+36x+12=0 | | 405x^4-5=0 | | 2x-(x+1)=3x-7 |

Equations solver categories