(7)/(10)n+(3)/(2)=(3)/(5)n+2

Simple and best practice solution for (7)/(10)n+(3)/(2)=(3)/(5)n+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7)/(10)n+(3)/(2)=(3)/(5)n+2 equation:



(7)/(10)n+(3)/(2)=(3)/(5)n+2
We move all terms to the left:
(7)/(10)n+(3)/(2)-((3)/(5)n+2)=0
Domain of the equation: 10n!=0
n!=0/10
n!=0
n∈R
Domain of the equation: 5n+2)!=0
n∈R
We get rid of parentheses
7/10n-3/5n-2+3/2=0
We calculate fractions
750n^2/200n^2+140n/200n^2+(-120n)/200n^2-2=0
We multiply all the terms by the denominator
750n^2+140n+(-120n)-2*200n^2=0
Wy multiply elements
750n^2-400n^2+140n+(-120n)=0
We get rid of parentheses
750n^2-400n^2+140n-120n=0
We add all the numbers together, and all the variables
350n^2+20n=0
a = 350; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·350·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*350}=\frac{-40}{700} =-2/35 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*350}=\frac{0}{700} =0 $

See similar equations:

| 20=(-5/6w) | | x⋅15=150 | | 0=w+4/3 | | -4(2n-2)=20 | | x2+7=19 | | -3x-5=-2(x-3) | | 550+75m=1600-75 | | 8x•-•4=100 | | 4^3m-4=64^3 | | -(3x/2)+4=16 | | x^2+3x+47=−10x+7 | | x*2.75=2 | | 5a+10=3a-6 | | -(4+m)=3m | | 363=y+242 | | 0=-6t^2+18t | | 4x+14=2(2x-5) | | 3(1-3x)=2(-4x+7)+5 | | -8m-42=14 | | 5x-5=-5+4x | | (a+2)+142=180 | | 2w-7w=-55 | | y-3=723 | | 3+0.5(4h+8)=9-2h | | 5p^2-10+4@p=10 | | -1.3r+2.1=6 | | 5w+18=43 | | 6–3n+5n=16 | | x+3+4=5x-5 | | 3.5i+4=1.5i+14 | | 20=4*u | | 4-3y=-26 |

Equations solver categories