(7+13x)(-20+16x)=x

Simple and best practice solution for (7+13x)(-20+16x)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7+13x)(-20+16x)=x equation:



(7+13x)(-20+16x)=x
We move all terms to the left:
(7+13x)(-20+16x)-(x)=0
We add all the numbers together, and all the variables
(13x+7)(16x-20)-x=0
We add all the numbers together, and all the variables
-1x+(13x+7)(16x-20)=0
We multiply parentheses ..
(+208x^2-260x+112x-140)-1x=0
We get rid of parentheses
208x^2-260x+112x-1x-140=0
We add all the numbers together, and all the variables
208x^2-149x-140=0
a = 208; b = -149; c = -140;
Δ = b2-4ac
Δ = -1492-4·208·(-140)
Δ = 138681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{138681}=\sqrt{9*15409}=\sqrt{9}*\sqrt{15409}=3\sqrt{15409}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-149)-3\sqrt{15409}}{2*208}=\frac{149-3\sqrt{15409}}{416} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-149)+3\sqrt{15409}}{2*208}=\frac{149+3\sqrt{15409}}{416} $

See similar equations:

| 9+5x=-3+2x | | 4x+6+7x-9=×/2 | | 49+4p=6 | | 1.4h+30=436.60 | | (2x/5)-(×/2)=40 | | 0=4m^2+11m+6 | | -20=5f=70 | | x+4/18=4/9+x-1/2 | | 1=16t^2+30t | | (t+2)+9t=6 | | 3(2x+5)-4=15+2x | | -7p-3p=-20 | | 5-5x=-2x+3 | | 8(v+6)=112 | | 14=1-7m-8 | | 4x+3-6x=2 | | (x^2)+8x+16=4(x+28) | | -5=2x+1=13 | | (3t-2)=88 | | 5=1+3x-8 | | x^2+8x+16=4(x+28) | | 32=2/3x-4 | | 2(x-3=10 | | 1/3(2x+9)=16 | | 8(v-7)+4=-108 | | 2-4x=12+6x | | 5x-2*(x-2)=-11 | | 12.6m-1=4 | | (3/8)=(x/16) | | 1-4=13-6a | | 6x+22=164 | | -4n+2-7n=20 |

Equations solver categories