(7+5i)(2-8i)=1-i

Simple and best practice solution for (7+5i)(2-8i)=1-i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7+5i)(2-8i)=1-i equation:



(7+5i)(2-8i)=1-i
We move all terms to the left:
(7+5i)(2-8i)-(1-i)=0
We add all the numbers together, and all the variables
(5i+7)(-8i+2)-(-1i+1)=0
We get rid of parentheses
(5i+7)(-8i+2)+1i-1=0
We multiply parentheses ..
(-40i^2+10i-56i+14)+1i-1=0
We add all the numbers together, and all the variables
(-40i^2+10i-56i+14)+i-1=0
We get rid of parentheses
-40i^2+10i-56i+i+14-1=0
We add all the numbers together, and all the variables
-40i^2-45i+13=0
a = -40; b = -45; c = +13;
Δ = b2-4ac
Δ = -452-4·(-40)·13
Δ = 4105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-\sqrt{4105}}{2*-40}=\frac{45-\sqrt{4105}}{-80} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+\sqrt{4105}}{2*-40}=\frac{45+\sqrt{4105}}{-80} $

See similar equations:

| 4(2x-3)=5(4-5x) | | 5+14a=9a+10 | | -16+2y=−6y | | j+46=97 | | 12y+15=2y+45 | | -16+y=−6y | | -26=w-55 | | (7+5i)(2-8i)=0 | | 2(y-3)-y=- | | -t/18=180 | | 1/50+x=1/10 | | 12x-1=12=10x+7 | | u+-106=235 | | 780=26t | | 3(x3-1)=27 | | 4.2m+4=24 | | p+3p+3=20 | | 5(x-1)-6x=3x–9 | | 11+5-2x=9x+5 | | 42=2m | | (10x)(12x)=110 | | 21y^2=62y+3 | | 0.25x+4=2x+8 | | -30=y+-44 | | 21y^2=62y^+3 | | 5h+7=3h+3 | | -5+5x=7x-13 | | –3(x+4)=2x+8 | | 5x+36+9x+18=180 | | 15x-117=171+7x | | n+27=-68 | | 8y=4-2y=22 |

Equations solver categories