If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7+w)-(w+7)/w=-4
We move all terms to the left:
(7+w)-(w+7)/w-(-4)=0
Domain of the equation: w!=0We add all the numbers together, and all the variables
w∈R
(w+7)-(w+7)/w-(-4)=0
We add all the numbers together, and all the variables
(w+7)-(w+7)/w+4=0
We get rid of parentheses
w-(w+7)/w+7+4=0
We multiply all the terms by the denominator
w*w-(w+7)+7*w+4*w=0
We add all the numbers together, and all the variables
11w+w*w-(w+7)=0
Wy multiply elements
w^2+11w-(w+7)=0
We get rid of parentheses
w^2+11w-w-7=0
We add all the numbers together, and all the variables
w^2+10w-7=0
a = 1; b = 10; c = -7;
Δ = b2-4ac
Δ = 102-4·1·(-7)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8\sqrt{2}}{2*1}=\frac{-10-8\sqrt{2}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8\sqrt{2}}{2*1}=\frac{-10+8\sqrt{2}}{2} $
| 6x+14x-6=5(4x+2) | | 10x-6=7x+60 | | 7-3x+2=39 | | (3x-5)+2X+84=180 | | a^2-60=21 | | |2x-6|+1=19 | | 72/2x=14 | | X+x+10+90=180 | | X-4.3=0.55+4.3+4.3=x= | | 5+8x-3=34 | | 4x-1=9x-22=9 | | 51+3/4k=78 | | y/3+10=32 | | r-1=0 | | 6x-4+4x+2=38 | | (8h-1)-(h+3);h=3 | | 16=-6-2r | | 2(6x+8)=4+6x$$ | | 5t^2-7t-12=0 | | 1/6k-1=5 | | 29=-19+6t | | 44=22+n | | (3x+1)*x=30 | | 5a+2/3=-1/6 | | 161=-15p+17+3p | | 4x-8x+33=3x+26 | | 31/2-x=-2/4 | | -23=b+7 | | a^2-60=217 | | 2+2+2=4x+2 | | x-5+3x=21 | | 3/1/2-x=-2/4 |