(7-5x)7=11x(-3x+5)

Simple and best practice solution for (7-5x)7=11x(-3x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7-5x)7=11x(-3x+5) equation:



(7-5x)7=11x(-3x+5)
We move all terms to the left:
(7-5x)7-(11x(-3x+5))=0
We add all the numbers together, and all the variables
(-5x+7)7-(11x(-3x+5))=0
We multiply parentheses
-35x-(11x(-3x+5))+49=0
We calculate terms in parentheses: -(11x(-3x+5)), so:
11x(-3x+5)
We multiply parentheses
-33x^2+55x
Back to the equation:
-(-33x^2+55x)
We get rid of parentheses
33x^2-55x-35x+49=0
We add all the numbers together, and all the variables
33x^2-90x+49=0
a = 33; b = -90; c = +49;
Δ = b2-4ac
Δ = -902-4·33·49
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-4\sqrt{102}}{2*33}=\frac{90-4\sqrt{102}}{66} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+4\sqrt{102}}{2*33}=\frac{90+4\sqrt{102}}{66} $

See similar equations:

| 3a-6=3 | | 6y-9=2y+1 | | 3x+8=-32-5 | | 498=2l | | 8z+8=6z+10 | | 2/3r-7=7 | | -5(-z-1)=5(-z-2)-5 | | -8(r-3)=16 | | 4(w+1+w=8(w-1)+6 | | 3x-4(-51/19)=12 | | 7(7+5n)=154 | | z+35=z5 | | 3.3g+5=1.3g+15 | | 4c-1=2c+18 | | 4a=47 | | -3(y+12)=-27 | | (7x2-7x+8)=(2x-5) | | 5a=42 | | -2z²+8z=0 | | f−8/9=5/9 | | 2(8x-6)=5(2x/5=6) | | 4(x+14)-3(-x+14)=7 | | 9-d=19 | | 16x2=81 | | 5m-(-4)=-1 | | (5x-6)(25x^2+30x+36)=0 | | 5=w/2.2​​ | | 5x−12=2x+24​∘​​ | | 74.3=d-5.4 | | 3=72/f-5 | | 4(x+10)+2(-x+4)=-8 | | ∠A=5x−12=∠B=2x+24​∘​​ |

Equations solver categories