(7/100x)+x=50

Simple and best practice solution for (7/100x)+x=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/100x)+x=50 equation:



(7/100x)+x=50
We move all terms to the left:
(7/100x)+x-(50)=0
Domain of the equation: 100x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/100x)+x-50=0
We add all the numbers together, and all the variables
x+(+7/100x)-50=0
We get rid of parentheses
x+7/100x-50=0
We multiply all the terms by the denominator
x*100x-50*100x+7=0
Wy multiply elements
100x^2-5000x+7=0
a = 100; b = -5000; c = +7;
Δ = b2-4ac
Δ = -50002-4·100·7
Δ = 24997200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24997200}=\sqrt{400*62493}=\sqrt{400}*\sqrt{62493}=20\sqrt{62493}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5000)-20\sqrt{62493}}{2*100}=\frac{5000-20\sqrt{62493}}{200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5000)+20\sqrt{62493}}{2*100}=\frac{5000+20\sqrt{62493}}{200} $

See similar equations:

| 4^2x-81=0 | | (2,k)+(1,–6)=(3,1) | | 0.6x+7/4x+x=4014 | | 0.07x+x=50 | | 56u+2–u=16u | | 70(180-70-y)=180 | | −w=−9 | | 3p/4+6=12 | | 7x-5=2×+15 | | 11x+15=P,L | | 2x/5-3=x/7+6 | | 9((y+5)=27 | | X+0,1925x=19 | | x*600-600=40 | | 5e=-40 | | 3ײ=4×+c | | -5×-11=8x | | 1.35^x=4.17 | | 5m=3m=16 | | 30x+5(x-13)=8223,45 | | (3/5x)-15-9=20 | | 2a-a^2=0.1464466094 | | 0,6x=9 | | 6.6^(10x)=3 | | Z=9y | | 30x+(5x-65)=8223,45 | | 4x+8x=2520 | | Y=55-11x= | | 3(7x-1)-(2x-1-x/3)=x+3/2 | | a-12=5a-2 | | W^2^2+13w²+36=0 | | 30x+(5x-65)=8613,45 |

Equations solver categories