(7/12x)-(x)=-5

Simple and best practice solution for (7/12x)-(x)=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/12x)-(x)=-5 equation:



(7/12x)-(x)=-5
We move all terms to the left:
(7/12x)-(x)-(-5)=0
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/12x)-x-(-5)=0
We add all the numbers together, and all the variables
-1x+(+7/12x)+5=0
We get rid of parentheses
-1x+7/12x+5=0
We multiply all the terms by the denominator
-1x*12x+5*12x+7=0
Wy multiply elements
-12x^2+60x+7=0
a = -12; b = 60; c = +7;
Δ = b2-4ac
Δ = 602-4·(-12)·7
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{246}}{2*-12}=\frac{-60-4\sqrt{246}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{246}}{2*-12}=\frac{-60+4\sqrt{246}}{-24} $

See similar equations:

| 4x^2+16x+8=-7 | | 4x²+7=0 | | x+3=`10 | | 45x1.99=68.88 | | x+11=3x-25 | | 6(2x)−3=22x+2 | | |x+8|+4=13 | | 0=-(x+4)(3x-1) | | 5-3x=3.5x | | Z×z+3×z/4-1=0 | | 89=a*93 | | Z*z+3*z/4-1=0 | | 6(3x+2)=-3(x+11) | | 9(m+5)-3(m-2=8m+31 | | Z^2+3z/4-1=0 | | 5.5z=-44 | | 5.25n=-84 | | 0.05(4x)+0.10(x)=1.25 | | x–3=-12 | | X2=x+42 | | 0.10(4x)+0.05(x)=1.25 | | 0.5(x+4)+0.10(x)=1.25 | | 9(u+2)=6u+48 | | 2x-4=6+32 | | 4+2.50y=21.50 | | 10=10b | | k+12=12 | | 18x-5=(6x+5) | | 2(3x+5=20 | | 5^x^2=50 | | 2u+5=-9 | | 11-t=4 |

Equations solver categories