(7/2)x+(1/2)x=1=(.5*3)+(9/2)x

Simple and best practice solution for (7/2)x+(1/2)x=1=(.5*3)+(9/2)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/2)x+(1/2)x=1=(.5*3)+(9/2)x equation:



(7/2)x+(1/2)x=1=(.5*3)+(9/2)x
We move all terms to the left:
(7/2)x+(1/2)x-(1)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/2)x+(+1/2)x-1=0
We multiply parentheses
7x^2+x^2-1=0
We add all the numbers together, and all the variables
8x^2-1=0
a = 8; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·8·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*8}=\frac{0-4\sqrt{2}}{16} =-\frac{4\sqrt{2}}{16} =-\frac{\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*8}=\frac{0+4\sqrt{2}}{16} =\frac{4\sqrt{2}}{16} =\frac{\sqrt{2}}{4} $

See similar equations:

| 8x-2=-42 | | 2x+51=6x | | 2x-3(2-x)=4(x+1) | | 160-u=218 | | -6y+2(y+6)=-4 | | -35=-4y–7 | | 8d+4d-5d-4=5d | | 3x2+10=37 | | 5/6(5x-7)=40 | | 4x-(-6)=2x | | X-(2-3x)=2+2(x-3) | | 150m-100m+43,200=46,125-175m | | -34=10x+6 | | 25=7+3k–12 | | 1+3(x-5)=7+× | | 9-2x=18-5x | | 5m-18=3m+4 | | 9-2x=17-5x | | (5x+8)+(6x+12)=90 | | 6u+4(u-2)=22 | | 8-4/x-28=-1/2 | | 11-13b=14b-12 | | 12-x=4x+37 | | 4g-17g-16g-15g=12 | | 271=-x+86 | | 5=3+z4 | | -3-2x=-8-2x | | 1/8x-32=7/8 | | -3/5*x+4=22 | | x+5+6x-10=180 | | 361x^2-25=0 | | 20x+90=10x+130 |

Equations solver categories