(7/3)(3x+2)=5

Simple and best practice solution for (7/3)(3x+2)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/3)(3x+2)=5 equation:



(7/3)(3x+2)=5
We move all terms to the left:
(7/3)(3x+2)-(5)=0
Domain of the equation: 3)(3x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+7/3)(3x+2)-5=0
We multiply parentheses ..
(+21x^2+7/3*2)-5=0
We multiply all the terms by the denominator
(+21x^2+7-5*3*2)=0
We get rid of parentheses
21x^2+7-5*3*2=0
We add all the numbers together, and all the variables
21x^2-23=0
a = 21; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·21·(-23)
Δ = 1932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1932}=\sqrt{4*483}=\sqrt{4}*\sqrt{483}=2\sqrt{483}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{483}}{2*21}=\frac{0-2\sqrt{483}}{42} =-\frac{2\sqrt{483}}{42} =-\frac{\sqrt{483}}{21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{483}}{2*21}=\frac{0+2\sqrt{483}}{42} =\frac{2\sqrt{483}}{42} =\frac{\sqrt{483}}{21} $

See similar equations:

| 7/3(3x+2)=5 | | 27=3x^2 | | 1=-x+2x-10 | | 24/k=8 | | 19+x=73 | | 6/13x+1/4=2/5-7/13x+2/5 | | 4x-5(2x+1)=6+1 | | w-105=764 | | 2(3.14)r=7850 | | 2(12x-8)=11x-6+13x-2 | | -5(x-4.2)=6.4 | | 4u+(-3)=1 | | 2x-10x=-48 | | n+4.1=5.5 | | 22p+12=58 | | s+15.5=17 | | 180=54+2y | | 5x-5=-2x+9 | | 4x-3=6x+18 | | 4x-5(2x+1)=1+-5 | | v+10=43 | | 1.8q-1.7-2.9q=-2.1q-3.9 | | 4x-5(2x+1)=0+-5 | | 16-3s=13 | | w-9/4=2 | | 9c–17=2c–3 | | (13b-3)-3(4b+1)=-7 | | v/8=5/17 | | w−94=2 | | 16−3s=13 | | 13/3=v/7 | | -3=-2x+× |

Equations solver categories