If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/3)t=84
We move all terms to the left:
(7/3)t-(84)=0
Domain of the equation: 3)t!=0We add all the numbers together, and all the variables
t!=0/1
t!=0
t∈R
(+7/3)t-84=0
We multiply parentheses
7t^2-84=0
a = 7; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·7·(-84)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{3}}{2*7}=\frac{0-28\sqrt{3}}{14} =-\frac{28\sqrt{3}}{14} =-2\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{3}}{2*7}=\frac{0+28\sqrt{3}}{14} =\frac{28\sqrt{3}}{14} =2\sqrt{3} $
| 6x^2-42x+40=0 | | Y-(-2)=-2/5(x-1) | | 4(0.8f-0.5)=0.4 | | 2^3x*5^3x=100 | | 5.4/x=3 | | -0.25x=4 | | 162+54+(x)=180 | | 126+(x)=180 | | 74+49+(3x)=180 | | 14y+12=600 | | 75+50+(3x+4)=180 | | 76+(4x+3)+(4x-11)=180 | | 42+(4x+16)=180 | | 104+28+(4x-8)=180 | | 6x+9-21=0 | | 9=-12+3/5x | | 7y21=0 | | 2=4+m | | 7=3w+7w | | 2x1=16 | | 3x-14+62=180 | | (2x+5+(2x+17)=180 | | 20x+20-60=0 | | 17^2-34x-8=0 | | 8d/2=40 | | 2/5x+-1/3x=5 | | 2x+(3x-1)=8x-2x | | 2(3x+2)+(3x+1)=28 | | -10d(d+1)=-14 | | 2y=4.25 | | x+61x+51+80=180 | | -95=t+-54 |