(7/3t)-2=4+7t

Simple and best practice solution for (7/3t)-2=4+7t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/3t)-2=4+7t equation:



(7/3t)-2=4+7t
We move all terms to the left:
(7/3t)-2-(4+7t)=0
Domain of the equation: 3t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+7/3t)-(7t+4)-2=0
We get rid of parentheses
7/3t-7t-4-2=0
We multiply all the terms by the denominator
-7t*3t-4*3t-2*3t+7=0
Wy multiply elements
-21t^2-12t-6t+7=0
We add all the numbers together, and all the variables
-21t^2-18t+7=0
a = -21; b = -18; c = +7;
Δ = b2-4ac
Δ = -182-4·(-21)·7
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{57}}{2*-21}=\frac{18-4\sqrt{57}}{-42} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{57}}{2*-21}=\frac{18+4\sqrt{57}}{-42} $

See similar equations:

| 18z-42+15=10z-31+32z-39 | | −7w−30=−4w | | Y^2-16y-6=0 | | (21/x^2-4x+10)-x^2+4x-6=0 | | 0y=7 | | 4x=3(x+8) | | x(3x+2)=(3x2+2) | | 2x+2+3x-52=360 | | 2x-10+70+x+30=180 | | 97-17x=6x | | 4/5b-2=18 | | x-5+x+30+75+x-35+130=540 | | 6p+17=9 | | x-3=5x+15 | | 21/(x^2-4x+10-x^2+4x-6)=0 | | x-40+x-60+x-20+110+120+130=720 | | 1=x-0.6x | | x-3=8x+21 | | -16t^2+50t+30=0 | | 1-0.6x=x | | 38+6x=14x-7 | | 4x/9=x/6+5 | | 4m^2-68m+168=0 | | 1-0.6x/x=0 | | 1=x+0.6x | | 20^-x=1/7 | | x+3x+30=180 | | 2m+3/4=m+7/3 | | x.4=3 | | x^2+5x+15+9/x=0 | | 5x+7=x=71 | | 6y+3/9+4=1 |

Equations solver categories