(7/3z)+(6/z)=-4

Simple and best practice solution for (7/3z)+(6/z)=-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/3z)+(6/z)=-4 equation:



(7/3z)+(6/z)=-4
We move all terms to the left:
(7/3z)+(6/z)-(-4)=0
Domain of the equation: 3z)!=0
z!=0/1
z!=0
z∈R
Domain of the equation: z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+7/3z)+(+6/z)-(-4)=0
We add all the numbers together, and all the variables
(+7/3z)+(+6/z)+4=0
We get rid of parentheses
7/3z+6/z+4=0
We calculate fractions
7z/3z^2+18z/3z^2+4=0
We multiply all the terms by the denominator
7z+18z+4*3z^2=0
We add all the numbers together, and all the variables
25z+4*3z^2=0
Wy multiply elements
12z^2+25z=0
a = 12; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·12·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*12}=\frac{-50}{24} =-2+1/12 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*12}=\frac{0}{24} =0 $

See similar equations:

| X(0.5x-3)=0 | | y´´´+5y´´=0 | | y´´´-6y´´+2y´+y=0 | | 11z=z+20 | | 30x+20=1000 | | 2(x-2)+3(x-3)+4(x-4)=2 | | x+.10x=30000 | | 0.5x+6/3x=x+26 | | 20-4y=8y+8 | | (X+3)2=16+(x+1)(x-1) | | -6(p+7)=-(1+6p) | | 17-3y=23-5y | | 40x2(11-6)=x | | 25v-75=-75 | | (3w+4)(2w–7)=0 | | 7g+32=-3 | | (X+4)(x*1)=x(x+1)+12 | | 33x=-44 | | 169x^2=144 | | -6/5x^2+19181/5000x+88847/500=0 | | 64x=200 | | 17.1+x=200 | | (-6)/(5)x^2+(19181)/(5000)x+(88847)/(500)=0 | | 8(3p-1)=-8(-4p+1)+8p | | u/6+14=3 | | 0.5(5−7x)=8−1(4x+6) | | 8c-3=-7+27 | | 7(z-1)=z-(3-2z) | | 8x+19=8x+1 | | 5u-13=42 | | x–5=16 | | 3y2-27y+60=0 |

Equations solver categories