(7/4*x)-(5/6)-(1/12*x)=0

Simple and best practice solution for (7/4*x)-(5/6)-(1/12*x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/4*x)-(5/6)-(1/12*x)=0 equation:



(7/4x)-(5/6)-(1/12x)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/4x)-(+1/12x)-(+5/6)=0
We get rid of parentheses
7/4x-1/12x-5/6=0
We calculate fractions
(-240x^2)/1728x^2+3024x/1728x^2+(-144x)/1728x^2=0
We multiply all the terms by the denominator
(-240x^2)+3024x+(-144x)=0
We get rid of parentheses
-240x^2+3024x-144x=0
We add all the numbers together, and all the variables
-240x^2+2880x=0
a = -240; b = 2880; c = 0;
Δ = b2-4ac
Δ = 28802-4·(-240)·0
Δ = 8294400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8294400}=2880$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2880)-2880}{2*-240}=\frac{-5760}{-480} =+12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2880)+2880}{2*-240}=\frac{0}{-480} =0 $

See similar equations:

| 13=-y+4 | | -3x+16=8x-17 | | x/2+16=19 | | -(x-1)-8=-18 | | 18x+11=40 | | 0=-6n-2n=16 | | 7=u/3+4 | | 8y+2=74 | | 350(3+x)=4550 | | 15+y=256 | | 12=-2+2w | | 350(3+x)=3500 | | -5x+17=-4x+15 | | -5x=17=-4x+15 | | x/3+5x=6 | | -13=m+7 | | 12=-2=2w | | 3046.10-10x=x | | x(-x+3)=5x+3 | | (1/4)^(3x)=6^(x-2) | | 9x+45=108 | | 7x-11=-4x | | 36-3x=93 | | f/22=21 | | 9x=36+45 | | 40(8+x)=1160 | | 40(8+x)=880 | | b/2=17 | | (2x+65)+(3x+40)=180 | | 4x+27=8x | | 9(y+7)=21 | | 15-2(3x+2)=6x-1 |

Equations solver categories