(7/4x)+(5/x)=2

Simple and best practice solution for (7/4x)+(5/x)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/4x)+(5/x)=2 equation:



(7/4x)+(5/x)=2
We move all terms to the left:
(7/4x)+(5/x)-(2)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/4x)+(+5/x)-2=0
We get rid of parentheses
7/4x+5/x-2=0
We calculate fractions
7x/4x^2+20x/4x^2-2=0
We multiply all the terms by the denominator
7x+20x-2*4x^2=0
We add all the numbers together, and all the variables
27x-2*4x^2=0
Wy multiply elements
-8x^2+27x=0
a = -8; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·(-8)·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*-8}=\frac{-54}{-16} =3+3/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*-8}=\frac{0}{-16} =0 $

See similar equations:

| 13t+18=18 | | -4+5m-4m^2=-m^2-m-10 | | 4/3w-13=2/3w | | 6(p-6)=-66 | | 2|7+n|=28 | | N(10n+2)=0 | | X^2-40x-48000=0 | | 8/4=2/n+8 | | 9y+2=5y+7 | | 4x+(70/4)=20 | | 133(y+9)=12y+133, | | 2=11−3d | | b^2-6b-112=0 | | 4/6=p+9/5 | | 2(x-18)=-4 | | 7v-25=89 | | 5w+3=-12 | | x-4.5=17. | | 3x-4=1x+3 | | 6(k+9)=66 | | 5s+39=179 | | |5x+9|=|9x+4| | | 12x+.05=18 | | 36=3x(8-4) | | 5x-1+3=32 | | x=6^2+9-8 | | 4(8x-2)=-2 | | 4(x-6)+8=6x=4 | | 3w^2+12=96 | | 2.1=0.82x | | Y=3x^2+-75 | | 3x-4=-1x+1 |

Equations solver categories