(7/5)x=7/15

Simple and best practice solution for (7/5)x=7/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/5)x=7/15 equation:



(7/5)x=7/15
We move all terms to the left:
(7/5)x-(7/15)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/5)x-(+7/15)=0
We multiply parentheses
7x^2-(+7/15)=0
We get rid of parentheses
7x^2-7/15=0
We multiply all the terms by the denominator
7x^2*15-7=0
Wy multiply elements
105x^2-7=0
a = 105; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·105·(-7)
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{15}}{2*105}=\frac{0-14\sqrt{15}}{210} =-\frac{14\sqrt{15}}{210} =-\frac{\sqrt{15}}{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{15}}{2*105}=\frac{0+14\sqrt{15}}{210} =\frac{14\sqrt{15}}{210} =\frac{\sqrt{15}}{15} $

See similar equations:

| -2.7t^2+40t-9.5=0 | | 2(b=5)=3(4-b) | | 13t-6t=15 | | 5s-4s-1=17 | | 180=12x+15+15x | | -t+13t=-12 | | 1/6s-1/2(s-2)=22.5 | | –4s=–3s+4 | | 1/9(n)=24 | | 0.04x+10=60 | | 4x=17-25 | | –5(2x–11)=27 | | 14j-12j+j+1=19 | | (14x+70)°+(20×+8)°=180 | | 14j−12j+j+1=19 | | (x+7)^2=60 | | -2x-5+5x-8=11 | | 224=3.2r | | (2x)+(4x-6)=180 | | (3c+3)(4c+2)=0 | | 2^2x+5^2=17 | | 8y+10=12 | | 5x-5-2x=9 | | y=4000(0.06)^14 | | t=-16t^2+8t+8 | | -2(3r-14)=4(13-3r) | | G(x)=3x^2-2x+8 | | -3(z-9)=3 | | 8x+20=320 | | 5-10g=55 | | -2(3r-14)=4(13-r3 | | -20+9c=20+5c |

Equations solver categories