If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/8)t+(5/6)t=82
We move all terms to the left:
(7/8)t+(5/6)t-(82)=0
Domain of the equation: 8)t!=0
t!=0/1
t!=0
t∈R
Domain of the equation: 6)t!=0We add all the numbers together, and all the variables
t!=0/1
t!=0
t∈R
(+7/8)t+(+5/6)t-82=0
We multiply parentheses
7t^2+5t^2-82=0
We add all the numbers together, and all the variables
12t^2-82=0
a = 12; b = 0; c = -82;
Δ = b2-4ac
Δ = 02-4·12·(-82)
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{246}}{2*12}=\frac{0-4\sqrt{246}}{24} =-\frac{4\sqrt{246}}{24} =-\frac{\sqrt{246}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{246}}{2*12}=\frac{0+4\sqrt{246}}{24} =\frac{4\sqrt{246}}{24} =\frac{\sqrt{246}}{6} $
| 70=7x-x+10 | | 23x+6-26x=2-5 | | 8(4x-2x)=4(3-5x)+2x | | 13=12+s/5 | | k/2+12=15 | | 3y+6-3=12 | | 29.5+5.9x=53.1 | | k2+12=15 | | 7n-14=5n+6 | | 2=1.01^x | | −0.19−0.12q=−0.112 | | 4n+4=31 | | 6w−w=15 | | -2y+8y=-50 | | 2h+12=20 | | 3(x-6)+9=2x-4 | | y/8=258 | | 2x*4=5 | | x+77.5+105.5=155.4 | | 13-(1/3x)=15 | | 4x*3x=15 | | 192x=155.4 | | x12=10/60 | | 13x–15–6x=1–(7x+9) | | 5(b−74)=75 | | 4x-5=3x=14 | | 6y+2=3* | | 6w=6;w=11 | | 5=w/4-14 | | (5x-22)/4=-8 | | 5(t+2)=65 | | 7x+19=138 |