(7/8)x-(5/8)=2

Simple and best practice solution for (7/8)x-(5/8)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/8)x-(5/8)=2 equation:



(7/8)x-(5/8)=2
We move all terms to the left:
(7/8)x-(5/8)-(2)=0
Domain of the equation: 8)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (7/8)x-2-(5/8)=0
We add all the numbers together, and all the variables
(+7/8)x-2-(+5/8)=0
We multiply parentheses
7x^2-2-(+5/8)=0
We get rid of parentheses
7x^2-2-5/8=0
We multiply all the terms by the denominator
7x^2*8-5-2*8=0
We add all the numbers together, and all the variables
7x^2*8-21=0
Wy multiply elements
56x^2-21=0
a = 56; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·56·(-21)
Δ = 4704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4704}=\sqrt{784*6}=\sqrt{784}*\sqrt{6}=28\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{6}}{2*56}=\frac{0-28\sqrt{6}}{112} =-\frac{28\sqrt{6}}{112} =-\frac{\sqrt{6}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{6}}{2*56}=\frac{0+28\sqrt{6}}{112} =\frac{28\sqrt{6}}{112} =\frac{\sqrt{6}}{4} $

See similar equations:

| 12÷y=6 | | 8)3a=6)=9(2a-4) | | 3/4x=9=3 | | 3r+12/9=3r-24/3 | | (7x-2)(2x-5)=0 | | p/2+5=7 | | (2/3)x-6=2 | | -6x(x-4)+2=42 | | -17=u/3+-15 | | 1.05x=15000 | | x/5=3/11 | | 2-3w=8 | | (5^x)^2+3*5^x-70=0 | | 3b-7=11 | | 6-2x/2=-5 | | -2x/5-2=1/2 | | 3=3g-6 | | 5(2x+1)=4(3x-8 | | 5x+(14x-3)=7(3x-2)+5 | | 13x+38=8x+58 | | 3=3g–6 | | 6x-48=4+38 | | 14x-5=6x+12 | | 2(x+5)=95 | | (4x-1)/(2)=x+7 | | 317e-4=31 | | 6x-48=4x38 | | -3=2+y/13 | | 2v–2=6 | | 15x-9=30*(x-1) | | 225=17y-2(15=y) | | 2x-1/3=x/4-12 |

Equations solver categories