(7/9)x=5/9

Simple and best practice solution for (7/9)x=5/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/9)x=5/9 equation:



(7/9)x=5/9
We move all terms to the left:
(7/9)x-(5/9)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/9)x-(+5/9)=0
We multiply parentheses
7x^2-(+5/9)=0
We get rid of parentheses
7x^2-5/9=0
We multiply all the terms by the denominator
7x^2*9-5=0
Wy multiply elements
63x^2-5=0
a = 63; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·63·(-5)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{35}}{2*63}=\frac{0-6\sqrt{35}}{126} =-\frac{6\sqrt{35}}{126} =-\frac{\sqrt{35}}{21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{35}}{2*63}=\frac{0+6\sqrt{35}}{126} =\frac{6\sqrt{35}}{126} =\frac{\sqrt{35}}{21} $

See similar equations:

| 2(s+3)=6 | | (7/9)x+1/3=8/9 | | 54-x=-12 | | -35=(x+2)/4 | | -35=(x | | 20/100=x/120 | | 7/9x+1/3=8/9 | | 5b+9=19 | | 7x-(100x^2+0.02x+50)=0 | | 3x+74=8x14 | | 7x-100x^2+0.02x+50=0 | | -1+4=-3+14x | | 4(6n-4)=34 | | x+73=-17 | | 31+2x=7-8x | | 6/x=8(252) | | 8x=6x282 | | 5x-5=14x+77 | | 8x=1692 | | 9/2=x/8 | | 4x=-2x+ | | 1/2n-1=13/8 | | 6x+6=4x+7 | | 5(x-4)+6=2x+3(-5+x) | | 9x-8=8x+6 | | 40/74x=286 | | 17+17+x=180 | | 12+7=8n+15n= | | 20x+5x-20=21x-4 | | 40x-74=28 | | (X+2)*(X-3=14x= | | 10-8x=130-36x |

Equations solver categories