If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/x+3)+(5/3x-1)=13/x+3
We move all terms to the left:
(7/x+3)+(5/3x-1)-(13/x+3)=0
Domain of the equation: x+3)!=0
x∈R
Domain of the equation: 3x-1)!=0We get rid of parentheses
x∈R
7/x+5/3x-13/x+3-1-3=0
We calculate fractions
(-39x+7)/3x^2+5x/3x^2+3-1-3=0
We add all the numbers together, and all the variables
(-39x+7)/3x^2+5x/3x^2-1=0
We multiply all the terms by the denominator
(-39x+7)+5x-1*3x^2=0
We add all the numbers together, and all the variables
5x+(-39x+7)-1*3x^2=0
Wy multiply elements
-3x^2+5x+(-39x+7)=0
We get rid of parentheses
-3x^2+5x-39x+7=0
We add all the numbers together, and all the variables
-3x^2-34x+7=0
a = -3; b = -34; c = +7;
Δ = b2-4ac
Δ = -342-4·(-3)·7
Δ = 1240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1240}=\sqrt{4*310}=\sqrt{4}*\sqrt{310}=2\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{310}}{2*-3}=\frac{34-2\sqrt{310}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{310}}{2*-3}=\frac{34+2\sqrt{310}}{-6} $
| 60*x=208.5 | | 4=3(x-1)-7x+15 | | −4x+12=-4 | | 12x+4×-8=2×-22 | | -0.5x+9.5=5 | | 2x+3=1.2x-8 | | 5(x+15)-2(x+6)=3 | | -2+g=2g-13 | | 3y=7=y+5 | | 0-306.25=2x(122.52) | | 4p-4+5p+5-100=100-100 | | 2x+3=1.2x-2.75 | | 7/3x-1=2/3(6x-2) | | 4g-6=2g+16 | | 20x3+x/50=700 | | 3g+10=1+4g | | (2m-5)^2=49 | | 6x^2-4=2x+16 | | 12+2g=g+12 | | 5x^2+6=5x | | 170x-1,000=30(5x-30 | | 7y-3=4y-5 | | 2x+3=1.2x-3 | | 15/3=x12 | | x^2/0.035-x=0 | | 3g-9=g+15 | | 5z-7-13+3z=13-3z-13+3z | | C=30+46h | | 4(x+10)+2(-x+10)=-2 | | –4.9x=9.8 | | 390m-1180=1238 | | 3k-4=5(2-k) |