(720/x-6)(x+4)=720

Simple and best practice solution for (720/x-6)(x+4)=720 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (720/x-6)(x+4)=720 equation:



(720/x-6)(x+4)=720
We move all terms to the left:
(720/x-6)(x+4)-(720)=0
Domain of the equation: x-6)(x+4)!=0
x∈R
We multiply parentheses ..
(+720x^2+2880x-6x-24)-720=0
We get rid of parentheses
720x^2+2880x-6x-24-720=0
We add all the numbers together, and all the variables
720x^2+2874x-744=0
a = 720; b = 2874; c = -744;
Δ = b2-4ac
Δ = 28742-4·720·(-744)
Δ = 10402596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10402596}=\sqrt{36*288961}=\sqrt{36}*\sqrt{288961}=6\sqrt{288961}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2874)-6\sqrt{288961}}{2*720}=\frac{-2874-6\sqrt{288961}}{1440} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2874)+6\sqrt{288961}}{2*720}=\frac{-2874+6\sqrt{288961}}{1440} $

See similar equations:

| 6+3t=8t+27 | | 4(y–6)=7y | | -7(x+4)^2+14=0 | | (X+16)+(4x-5)=180 | | 1/2(8x+14)=-41 | | d=1/125 | | 1/3x-3=5 | | 3(x+6)=5x+4 | | -2/4=t+1/3 | | 16/9=k/9 | | 7-3/4m=-2 | | 5-6a-2a=13 | | 3(x+6)=5×+4 | | 3(x+6)=6x+4 | | -3x+5=-8x | | 3.75=-16t^2+60t+25 | | 6(2t+9)=12t+-1 | | 3(-8+5x)=111 | | -5x=138+2x | | 2(x-3)=5-2x | | 2= x +6−2x | | 11x+17=7x+21 | | 25m=30.76m | | 9–(2v+3)=–2v–6 | | 2x=1x-40 | | 3+x/8=7/12 | | 25=-16t^2+60t | | -10p-65=-5 | | -.01x^2+.6x+6.2=0 | | 2/5-x=1/10 | | 25=-16t^2+60t+25 | | -10+5n=n-6 |

Equations solver categories