If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(750000/x)+.5x=500000
We move all terms to the left:
(750000/x)+.5x-(500000)=0
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+750000/x)+.5x-500000=0
We add all the numbers together, and all the variables
.5x+(+750000/x)-500000=0
We get rid of parentheses
.5x+750000/x-500000=0
We multiply all the terms by the denominator
(.5x)*x-500000*x+750000=0
We add all the numbers together, and all the variables
(+.5x)*x-500000*x+750000=0
We add all the numbers together, and all the variables
-500000x+(+.5x)*x+750000=0
We multiply parentheses
x^2-500000x+750000=0
a = 1; b = -500000; c = +750000;
Δ = b2-4ac
Δ = -5000002-4·1·750000
Δ = 249997000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{249997000000}=\sqrt{1000000*249997}=\sqrt{1000000}*\sqrt{249997}=1000\sqrt{249997}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-500000)-1000\sqrt{249997}}{2*1}=\frac{500000-1000\sqrt{249997}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-500000)+1000\sqrt{249997}}{2*1}=\frac{500000+1000\sqrt{249997}}{2} $
| 2•m=2•(1/2) | | 4+x+x=34 | | 8x+24=125 | | 2x2+12x+68=0 | | 0-(-3y-7y)=0 | | 2/5a-5+8/9a=19 | | x²+x+2.5=0 | | |2x+6-5x|=9 | | -2b+2(b+-10)=2(10+5b) | | c(c/2)+c^2=5c^2-7c(c/2) | | (a−2)×12=0.33 | | 13(10+y)-12=43-5(y+3) | | 4x-3/5=6-2x/2 | | 8r+25=5R | | 2/x+4=1/x-2 | | 2√x+4=1√x-2 | | 10=-2.7t^2+40t+6.5 | | 1.5x+24=3x | | .15c=600 | | 126=-21x | | -136=-17x | | 440=15x | | 17=k/14 | | (x/4)3=0.5 | | 8^x=2^x+2 | | 8^x=2^x+@2 | | 8^x=2^x+@ | | 8(x+10)+21x=12(x+5)-(16+x) | | -4(-5v+5)-4v=6(v-4)-1 | | 1.04=(1+x)+x(1+x) | | x^2+8x=140 | | 5x-33=12x+4 |