If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x+14)(9x-8)=180
We move all terms to the left:
(7x+14)(9x-8)-(180)=0
We multiply parentheses ..
(+63x^2-56x+126x-112)-180=0
We get rid of parentheses
63x^2-56x+126x-112-180=0
We add all the numbers together, and all the variables
63x^2+70x-292=0
a = 63; b = 70; c = -292;
Δ = b2-4ac
Δ = 702-4·63·(-292)
Δ = 78484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{78484}=\sqrt{4*19621}=\sqrt{4}*\sqrt{19621}=2\sqrt{19621}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-2\sqrt{19621}}{2*63}=\frac{-70-2\sqrt{19621}}{126} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+2\sqrt{19621}}{2*63}=\frac{-70+2\sqrt{19621}}{126} $
| 12+5x+x+5x=25.75 | | 2x-(2x=5) | | 5x+-4x=7 | | x^2-10x-76=0 | | 5n-3=2n+6-5n | | 2x-0.4=1=1.8x | | 6/53/25=n | | x(x+2)+72=180 | | -3y^2+12y=-41 | | 3x+2x=10x+4 | | Y-10=2y | | 0.35x+0.4-0.5x=0.6x+0.32 | | 1+5x=17-3x | | 4+(n-1)^3=58 | | 2,400=60w | | (150+49x)/50=100 | | X=17+2y | | TV=2y+8 | | (150+59x)/5=100 | | (150+49x)/5=100 | | SU=3y-63 | | (150+49x)=3 | | 14x+40-20x=2x | | 12=(9-u) | | 9x-15=20x+10 | | 12+11x=25.75 | | 243-x=97 | | 7m+4=27 | | 3x-5-x=15-x | | 135+180+x=360 | | 13s=12s-16 | | 2x+6x+1=7x+x-1 |