If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x+4)(3x+9)=(4x+3)(3x+5)
We move all terms to the left:
(7x+4)(3x+9)-((4x+3)(3x+5))=0
We multiply parentheses ..
(+21x^2+63x+12x+36)-((4x+3)(3x+5))=0
We calculate terms in parentheses: -((4x+3)(3x+5)), so:We get rid of parentheses
(4x+3)(3x+5)
We multiply parentheses ..
(+12x^2+20x+9x+15)
We get rid of parentheses
12x^2+20x+9x+15
We add all the numbers together, and all the variables
12x^2+29x+15
Back to the equation:
-(12x^2+29x+15)
21x^2-12x^2+63x+12x-29x+36-15=0
We add all the numbers together, and all the variables
9x^2+46x+21=0
a = 9; b = 46; c = +21;
Δ = b2-4ac
Δ = 462-4·9·21
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-4\sqrt{85}}{2*9}=\frac{-46-4\sqrt{85}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+4\sqrt{85}}{2*9}=\frac{-46+4\sqrt{85}}{18} $
| 3x-2/4=5x-60 | | W=1.75h+4 | | -17r+7r-9r-4r=-15 | | 2a+3a-5a+3a-2a=19 | | 2x+32=48 | | -15b+20b=10 | | 10u-4u-3u+4u-5u=18 | | 3(24-y)+y=40 | | 1080=4x | | 7v+v-v=7 | | 108=4/10x | | 2u-u+2u-3u+2u=20 | | (x-10)+x=90 | | 3t-t+2t-t=12 | | 10w+3w=20w-3.5 | | |b+1/3|+1/5=1/4 | | 10y-12=5y+3 | | 36,000=x•0.02 | | y/2+20=30 | | 0.5y+7=4y | | 0.5y+8=4y | | 14y+5-5y=5Y(y+5) | | 9W+8-w=2(2W+8) | | (3x+15)+(2x+30)=180 | | 90=180(n-2)/n | | x(x-1)/2=66 | | y(6)−y=0 | | x^2+18x-49+81=0 | | 30x+x=20+(50-x) | | X÷4=4x-24.2 | | -16t^2+140t+360=0 | | -16t+140t+360=0 |