If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (7x + 4)(9x + -3) = 0 Reorder the terms: (4 + 7x)(9x + -3) = 0 Reorder the terms: (4 + 7x)(-3 + 9x) = 0 Multiply (4 + 7x) * (-3 + 9x) (4(-3 + 9x) + 7x * (-3 + 9x)) = 0 ((-3 * 4 + 9x * 4) + 7x * (-3 + 9x)) = 0 ((-12 + 36x) + 7x * (-3 + 9x)) = 0 (-12 + 36x + (-3 * 7x + 9x * 7x)) = 0 (-12 + 36x + (-21x + 63x2)) = 0 Combine like terms: 36x + -21x = 15x (-12 + 15x + 63x2) = 0 Solving -12 + 15x + 63x2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '3'. 3(-4 + 5x + 21x2) = 0 Factor a trinomial. 3((-4 + -7x)(1 + -3x)) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(-4 + -7x)' equal to zero and attempt to solve: Simplifying -4 + -7x = 0 Solving -4 + -7x = 0 Move all terms containing x to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + -7x = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -7x = 0 + 4 -7x = 0 + 4 Combine like terms: 0 + 4 = 4 -7x = 4 Divide each side by '-7'. x = -0.5714285714 Simplifying x = -0.5714285714Subproblem 2
Set the factor '(1 + -3x)' equal to zero and attempt to solve: Simplifying 1 + -3x = 0 Solving 1 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -3x = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -3x = 0 + -1 -3x = 0 + -1 Combine like terms: 0 + -1 = -1 -3x = -1 Divide each side by '-3'. x = 0.3333333333 Simplifying x = 0.3333333333Solution
x = {-0.5714285714, 0.3333333333}
| 5*x^2-55=90 | | 2(b+3.5)=13-2b | | X^2-9x-18+10=0 | | 5^1+(1/2)0 | | 3x+4=13x-9 | | 3/x=54 | | 8x=x^2 | | 6-3a=21 | | 6*x^2+1=13 | | 5-x=-14 | | 8/3m-2=5/3m+4 | | X-4/3x=-1/3 | | 5(x-2)-4(x-4)=0 | | 5y+11=106 | | 5y+11=19 | | 5c+3=2c+15 | | X^2-6b+8=0 | | 75=x+5 | | 5z-4=z+20 | | 5y+11=26 | | 10x=900 | | -25x^2-1/9=0 | | 3x+22=4x-6 | | 4x+9=12x-7 | | 1.3-x=-.1 | | 3x+55=4x+20 | | 25a^2-40a+16=0 | | .2x+.4x=.6 | | -12a-1=49 | | (2y^7)6= | | 28,5+4x=36,5 | | 84-2x=9x+14 |