(7x-5)=(x+1)(x+1)

Simple and best practice solution for (7x-5)=(x+1)(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x-5)=(x+1)(x+1) equation:



(7x-5)=(x+1)(x+1)
We move all terms to the left:
(7x-5)-((x+1)(x+1))=0
We get rid of parentheses
7x-((x+1)(x+1))-5=0
We multiply parentheses ..
-((+x^2+x+x+1))+7x-5=0
We calculate terms in parentheses: -((+x^2+x+x+1)), so:
(+x^2+x+x+1)
We get rid of parentheses
x^2+x+x+1
We add all the numbers together, and all the variables
x^2+2x+1
Back to the equation:
-(x^2+2x+1)
We add all the numbers together, and all the variables
7x-(x^2+2x+1)-5=0
We get rid of parentheses
-x^2+7x-2x-1-5=0
We add all the numbers together, and all the variables
-1x^2+5x-6=0
a = -1; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·(-1)·(-6)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*-1}=\frac{-6}{-2} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*-1}=\frac{-4}{-2} =+2 $

See similar equations:

| 70=10x-1/4x | | -3(x-2)/6=2(x-1) | | -3/3n=8 | | 2n+(-6)+12=-4 | | -19-12s=19-10s | | -3x+25=-15+2x | | 4z+3/4=5z=5/4 | | 2(m+7)=3(m+2) | | x+2(x+10)=83 | | 4x+-7=-10x8 | | 0.75=0.4x+0.5 | | -15+k=-9 | | Y=0.1-0.005xX=6 | | -2(y+3)+4=14 | | 9x+1-5x=8+3x+2 | | -10-3u=-2u+8 | | 6x-7+3x=4+5+x | | d(4)=40(4) | | x=(5x-12) | | −6(x−1)=108 | | 12+5f+17f=-9+19f | | –2s=–s+7 | | (2x+11)=6x-5) | | 40=-(1)/(3)(9x+30)+2 | | 3(2x-1)=3x/4 | | (-16x+130)+(-20x+23)=180 | | 8b+5b=-8+5b | | 11y-32-7.6=180 | | 2x+3+3x+5=6x-2 | | (9x-25)*2+104=180 | | w+18/2=10 | | -6-3/5h=18 |

Equations solver categories