(7x-6)(3x+3)+(3x-1)(2x+3)=0

Simple and best practice solution for (7x-6)(3x+3)+(3x-1)(2x+3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x-6)(3x+3)+(3x-1)(2x+3)=0 equation:



(7x-6)(3x+3)+(3x-1)(2x+3)=0
We multiply parentheses ..
(+21x^2+21x-18x-18)+(3x-1)(2x+3)=0
We get rid of parentheses
21x^2+21x-18x+(3x-1)(2x+3)-18=0
We multiply parentheses ..
21x^2+(+6x^2+9x-2x-3)+21x-18x-18=0
We add all the numbers together, and all the variables
21x^2+(+6x^2+9x-2x-3)+3x-18=0
We get rid of parentheses
21x^2+6x^2+9x-2x+3x-3-18=0
We add all the numbers together, and all the variables
27x^2+10x-21=0
a = 27; b = 10; c = -21;
Δ = b2-4ac
Δ = 102-4·27·(-21)
Δ = 2368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2368}=\sqrt{64*37}=\sqrt{64}*\sqrt{37}=8\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8\sqrt{37}}{2*27}=\frac{-10-8\sqrt{37}}{54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8\sqrt{37}}{2*27}=\frac{-10+8\sqrt{37}}{54} $

See similar equations:

| -16-5x=44 | | 18*x/2=126 | | 3-4y=7+2y | | -143+15x=-323 | | 5w-10=7(w-4) | | -20-4x=-56 | | 6-2(x/3)=1+4x | | (x-2)(X-3)=72 | | -278=-122+12x | | -78+9x=111 | | -78+9x=11 | | 32a^2-60a+27=0 | | 32=-3x-25 | | -6x+6=6-6x | | x-37=-56 | | -7y-15=-25 | | n÷6-1=6 | | 24r^2-50r+25=0 | | x^2+7x-4=10x+x^2 | | -8-2n+6-3n-n=22 | | 2x^2-68x-192=0 | | Y=2x-1.66666667 | | 1/4w-9=14 | | G=5v-(100+2v) | | -4(x-11)(x-3)=0 | | x4+21=19 | | x÷4+21=19 | | (9b-8)-2(4b+2)=-3 | | (X+10)x=90 | | m/6-9/6=-42/6 | | 6(y-9)=5(1+y) | | 5=-q/2-5/1 |

Equations solver categories