(7x-6)(3x-3)+(3x-11)(2x+3)=0

Simple and best practice solution for (7x-6)(3x-3)+(3x-11)(2x+3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x-6)(3x-3)+(3x-11)(2x+3)=0 equation:



(7x-6)(3x-3)+(3x-11)(2x+3)=0
We multiply parentheses ..
(+21x^2-21x-18x+18)+(3x-11)(2x+3)=0
We get rid of parentheses
21x^2-21x-18x+(3x-11)(2x+3)+18=0
We multiply parentheses ..
21x^2+(+6x^2+9x-22x-33)-21x-18x+18=0
We add all the numbers together, and all the variables
21x^2+(+6x^2+9x-22x-33)-39x+18=0
We get rid of parentheses
21x^2+6x^2+9x-22x-39x-33+18=0
We add all the numbers together, and all the variables
27x^2-52x-15=0
a = 27; b = -52; c = -15;
Δ = b2-4ac
Δ = -522-4·27·(-15)
Δ = 4324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4324}=\sqrt{4*1081}=\sqrt{4}*\sqrt{1081}=2\sqrt{1081}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-2\sqrt{1081}}{2*27}=\frac{52-2\sqrt{1081}}{54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+2\sqrt{1081}}{2*27}=\frac{52+2\sqrt{1081}}{54} $

See similar equations:

| 8/7=x/28 | | 3x+5(-2x-6)=19 | | 2(5x-12)=-(5x-6) | | (7x-6)-(4x+5)=0 | | 1/x−1−2/7=3 | | 6^4x-4=32 | | 2x2=128 | | 33=n÷3n= | | -102-12x=-246 | | 7x+3x-(10x/2)=5+x | | (7x-6)(3x+3)+(3x-1)(2x+3)=0 | | -16-5x=44 | | 18*x/2=126 | | 3-4y=7+2y | | -143+15x=-323 | | 5w-10=7(w-4) | | -20-4x=-56 | | 6-2(x/3)=1+4x | | (x-2)(X-3)=72 | | -278=-122+12x | | -78+9x=111 | | -78+9x=11 | | 32a^2-60a+27=0 | | 32=-3x-25 | | -6x+6=6-6x | | x-37=-56 | | -7y-15=-25 | | n÷6-1=6 | | 24r^2-50r+25=0 | | x^2+7x-4=10x+x^2 | | -8-2n+6-3n-n=22 | | 2x^2-68x-192=0 |

Equations solver categories