If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x^2)+3=35
We move all terms to the left:
(7x^2)+3-(35)=0
We add all the numbers together, and all the variables
7x^2-32=0
a = 7; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·7·(-32)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*7}=\frac{0-8\sqrt{14}}{14} =-\frac{8\sqrt{14}}{14} =-\frac{4\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*7}=\frac{0+8\sqrt{14}}{14} =\frac{8\sqrt{14}}{14} =\frac{4\sqrt{14}}{7} $
| X=7w2+4w−6Y=w2−11w+13 | | 3+5u=18 | | 4b^2-354=0 | | 10=-6+d | | -4+3x=44x+5 | | 2x*1,5x=0 | | 15=-2x-4x | | w+4.9=9.28 | | 3x+12=x^2-x-20 | | 15x²-44x+21=0 | | –2−3p=–3p | | 0.5n+12n+1.5n=28 | | 17=4w+5 | | 5xx4=-1 | | -4+55x=44x+5 | | x-5=4x-20 | | 3t=–1+3t | | 4(5n+2)=28 | | -y+2y-1=-9 | | 8x+10=18x+14 | | 5x4=-1 | | 2(x-75)=400 | | u-4/5=63/4 | | 8(x-1)+5=-19 | | -x/4=-21 | | 30+6t=12t | | –9k=8−8k | | 20f+(-8f-15)=3(4f+-5) | | -2–3x–6=2(10+2x) | | 3r−10=65 | | 9/x=47 | | 4r−r+4r+3r=20 |