If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7y+4)(4y-5)=0
We multiply parentheses ..
(+28y^2-35y+16y-20)=0
We get rid of parentheses
28y^2-35y+16y-20=0
We add all the numbers together, and all the variables
28y^2-19y-20=0
a = 28; b = -19; c = -20;
Δ = b2-4ac
Δ = -192-4·28·(-20)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-51}{2*28}=\frac{-32}{56} =-4/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+51}{2*28}=\frac{70}{56} =1+1/4 $
| 11/3+x=12 | | (4x+15)+(x-15)=180 | | (X2-2x-14)^5=1 | | 12x+8=3x+26 | | x=1.01+x | | 0.01(25+x)+25=25+x | | 3x-12=40° | | 4y+9y=20 | | 3(5x-6)=6(x-12) | | 5x-28=2x+57 | | -6+13=4x+63 | | 2^−3×e^−3=10^−3 | | 2^3/2^c=2^-5 | | (D^3+2D^2+9D+18)y=0 | | 2x+14=-3x+9 | | 232c=2−5 | | 25425=π(x×2-200×2)/4 | | 7x-4/8x+3=7/2 | | 20x^2+18x-5=0 | | 4x+17=7x-1 | | 4n3n=4 | | 2x+10=50x= | | 3x=+5=14 | | (D²-7D-6)y=0 | | -4(1)-2x)=3(2-x)+1 | | X/2x+10=100 | | -4(1)-2x)=3(2-x)=1 | | 3x+10=122 | | 4y=3y+18 | | 5x/7+3x/5=21 | | 7x+8x=90° | | 8^y^-3=10 |