(8+1/3)y+4/5=910

Simple and best practice solution for (8+1/3)y+4/5=910 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8+1/3)y+4/5=910 equation:



(8+1/3)y+4/5=910
We move all terms to the left:
(8+1/3)y+4/5-(910)=0
Domain of the equation: 3)y!=0
y!=0/1
y!=0
y∈R
determiningTheFunctionDomain (8+1/3)y-910+4/5=0
We add all the numbers together, and all the variables
(1/3+8)y-910+4/5=0
We multiply parentheses
y^2+8y-910+4/5=0
We multiply all the terms by the denominator
y^2*5+8y*5+4-910*5=0
We add all the numbers together, and all the variables
y^2*5+8y*5-4546=0
Wy multiply elements
5y^2+40y-4546=0
a = 5; b = 40; c = -4546;
Δ = b2-4ac
Δ = 402-4·5·(-4546)
Δ = 92520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92520}=\sqrt{36*2570}=\sqrt{36}*\sqrt{2570}=6\sqrt{2570}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-6\sqrt{2570}}{2*5}=\frac{-40-6\sqrt{2570}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+6\sqrt{2570}}{2*5}=\frac{-40+6\sqrt{2570}}{10} $

See similar equations:

| 6x-12=11x-33 | | 0.05(20-y)+0.01y=0.64 | | 9+-11x-7-3x=4 | | 3x2+10+8=0 | | 7-9(5x-6)=-7x-2 | | 2x+7=+4x-10=+7x-25= | | 3a+1=-a—3 | | c/3+8=29 | | 1/3*x=1/3x | | x-23=19 | | 24-2(x+)=30 | | 8a+7=16+a | | -8+4x-8x+30=90 | | 12(4+n7+5(-2n-9)=18 | | 9.7m=8.73 | | 8a+a=16+a | | I2x-1I=3 | | 4x=1=15 | | ⅔(4x+5)=9/4x | | 4x=1=5 | | -5(6+3k)=-75 | | 9+2I4x-3I=19 | | 5/3=8h/2 | | (3x+25)+(7x-19)+90=215 | | |3x+2|−14=−6 | | 9x-38+2x+24=90 | | 6/2p=-5/8 | | 3n-10-8n=20 | | 5+6a=23 | | -.75(2c+6)=12 | | 4g-2=-67/7 | | 210-68=56t+1164 |

Equations solver categories