If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8+9i)(2-i)-(1-i)(1+i)=
We move all terms to the left:
(8+9i)(2-i)-(1-i)(1+i)-()=0
We add all the numbers together, and all the variables
(9i+8)(-1i+2)-(-1i+1)(i+1)-()=0
We add all the numbers together, and all the variables
(9i+8)(-1i+2)-(-1i+1)(i+1)=0
We multiply parentheses ..
(-9i^2+18i-8i+16)-(-1i+1)(i+1)=0
We get rid of parentheses
-9i^2+18i-8i-(-1i+1)(i+1)+16=0
We multiply parentheses ..
-9i^2-(-1i^2-1i+i+1)+18i-8i+16=0
We add all the numbers together, and all the variables
-9i^2-(-1i^2-1i+i+1)+10i+16=0
We get rid of parentheses
-9i^2+1i^2+1i-i+10i-1+16=0
We add all the numbers together, and all the variables
-8i^2+10i+15=0
a = -8; b = 10; c = +15;
Δ = b2-4ac
Δ = 102-4·(-8)·15
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{145}}{2*-8}=\frac{-10-2\sqrt{145}}{-16} $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{145}}{2*-8}=\frac{-10+2\sqrt{145}}{-16} $
| 5/15=x/45 | | –7y+9=–8y | | 3x+9+10x-4=90 | | 11k-18+17k+-5k-18k+-14=1 | | 10-7h=-5h-6 | | 31p+19p+10p=180 | | 7g-6g+3g-3g=14 | | 34+50+45f=4F | | a2+100=144 | | -7w+-9w-(-8w)+-16w-(-16w)=16 | | Y-20+2y-20+y-12=180 | | h/6-79=88 | | 14w-8=13w+22+7w | | 33+t/t=-11 | | 2u-18+2u-20+2u-10=180 | | 24/16=48/t | | 7/z=2/10 | | -2=9+c/8 | | 2s+3s+70=180 | | 10−7h=–5h−6 | | 3v-v+3v-5v+v=10 | | 67+n/5=54 | | 31+119+a-32=180 | | 4u+3=7u | | -2w+6=2(w+6) | | 6x+3x+2+1x=4+5x+8 | | 8w=7w+3 | | z/6+3=-79 | | 9g+2g-8g-2g=16 | | -30+-7q=-86 | | 34+5s+s+26=180 | | y=2,150+30,100 |