(8+w)(4w+3)=w

Simple and best practice solution for (8+w)(4w+3)=w equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8+w)(4w+3)=w equation:



(8+w)(4w+3)=w
We move all terms to the left:
(8+w)(4w+3)-(w)=0
We add all the numbers together, and all the variables
(w+8)(4w+3)-w=0
We add all the numbers together, and all the variables
-1w+(w+8)(4w+3)=0
We multiply parentheses ..
(+4w^2+3w+32w+24)-1w=0
We get rid of parentheses
4w^2+3w+32w-1w+24=0
We add all the numbers together, and all the variables
4w^2+34w+24=0
a = 4; b = 34; c = +24;
Δ = b2-4ac
Δ = 342-4·4·24
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{193}}{2*4}=\frac{-34-2\sqrt{193}}{8} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{193}}{2*4}=\frac{-34+2\sqrt{193}}{8} $

See similar equations:

| 5x(8x+20)=40 | | (15+x)/(33+x)=64/10000 | | 2x+5-45=30 | | x²+|x+1|=1-2x | | 15+x/(10+18+15+x)=64 | | 5(x-1)+3x=7 | | -(x-9)-4x=x+51 | | (x-9)-4x=x+51 | | X²-6x-1=0 | | 7e+2=65 | | x^2-1.2x=12.8 | | 3/4=x/288 | | 25r-10= | | (X+1)(X+2)=(x-5)(x-6) | | 3x+23=11x-44 | | x(x+3)=19.84 | | x(x+3=19.84 | | x/2+x/3=15/2 | | 8(x-4)=3(x+2) | | x+0.08x=5 | | x+15+3x+25=180 | | x+11=5x+25 | | x(3x-7)(2x+3)=4 | | 64+x/2=57 | | X=4/5x+8 | | 3(x-2)-2(x-3)=4 | | |7x−3|+9=24 | | /2x+1=5 | | a2+3a+2=0 | | 3c2+-17c+14=0 | | p/X/5p+5+3p=21 | | Y2+30a+125=0 |

Equations solver categories