(8/3)n=410

Simple and best practice solution for (8/3)n=410 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8/3)n=410 equation:



(8/3)n=410
We move all terms to the left:
(8/3)n-(410)=0
Domain of the equation: 3)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+8/3)n-410=0
We multiply parentheses
8n^2-410=0
a = 8; b = 0; c = -410;
Δ = b2-4ac
Δ = 02-4·8·(-410)
Δ = 13120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13120}=\sqrt{64*205}=\sqrt{64}*\sqrt{205}=8\sqrt{205}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{205}}{2*8}=\frac{0-8\sqrt{205}}{16} =-\frac{8\sqrt{205}}{16} =-\frac{\sqrt{205}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{205}}{2*8}=\frac{0+8\sqrt{205}}{16} =\frac{8\sqrt{205}}{16} =\frac{\sqrt{205}}{2} $

See similar equations:

| 4x+14=3x+1 | | Y=-2x+7X+4=0 | | 8/3*n=410 | | 8400/p=60 | | 60p=8400 | | C(x)=10x+100 | | 6x²-9x+1=x | | -7(-3x+8)-9x=6(x-6)-5 | | X^4-38x^2+72=0 | | 6^m=5 | | 3(8m+5)=4(6m+7)-1324m+15=24m+28-13=28-13 | | 12c=66 | | 4w2+3w−2=  −2w−2w | | (x+1)*(x+1)=(x+1)*2 | | 4w2+3w−2=  −2w | | y+16=65 | | 9.6+2(4.5w+3)=1.2(5w−3) | | 1/10(x+169)=-2(2-x) | | C=100+5x+4x^2 | | f-12=4-7f | | x-51=10(2x+3)-5 | | -4(x+5)+24=11-5x | | 2(x+4)-2=46-3x | | X=3+2x9 | | x/2+x/3=x–7 | | 19s/1235=1 | | |2-8x/5|=9 | | 3x+5x+30=x | | 1+2=a−1 | | 0.8x0.3=N | | (x/x+1)=(5/7) | | -m–9=42 |

Equations solver categories