(8/7x)-6=x+7

Simple and best practice solution for (8/7x)-6=x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8/7x)-6=x+7 equation:



(8/7x)-6=x+7
We move all terms to the left:
(8/7x)-6-(x+7)=0
Domain of the equation: 7x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+8/7x)-(x+7)-6=0
We get rid of parentheses
8/7x-x-7-6=0
We multiply all the terms by the denominator
-x*7x-7*7x-6*7x+8=0
Wy multiply elements
-7x^2-49x-42x+8=0
We add all the numbers together, and all the variables
-7x^2-91x+8=0
a = -7; b = -91; c = +8;
Δ = b2-4ac
Δ = -912-4·(-7)·8
Δ = 8505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8505}=\sqrt{81*105}=\sqrt{81}*\sqrt{105}=9\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-91)-9\sqrt{105}}{2*-7}=\frac{91-9\sqrt{105}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-91)+9\sqrt{105}}{2*-7}=\frac{91+9\sqrt{105}}{-14} $

See similar equations:

| 8x-28=6x+24 | | X+2/5x-2/2x=3/20 | | ƒ(x)=(-6)2+8(-6)+10 | | 5(w+68)=80 | | -7+4x=2(x-6) | | X-173=100+14x | | 5(x-4)^4=45 | | Y=-2.7x+120 | | ƒ(-6)=x2+8x+10 | | 23-3j=14 | | 4x-x=99 | | 5n+3=2(n+4)-3n | | 3x-21=29+x | | 42=9b-18 | | 22x-5=2(1.4x+3) | | 1t-19=17 | | 1n+11=20 | | 10y+10=70 | | 4*x-5+2=x+3 | | 20x+8=21x+10 | | 3(2+x)+7=2x+4 | | 5w=(4) | | 4-10b=1.5;b=0.25= | | A=b=17 | | 4(3x+x)+7-5x=8+(-5)(5x-6x)=23 | | 45+83+x=180 | | 46+83+45+x=180 | | 2(x+4(=3(2x+1) | | 2+1+1x7=0 | | 4(j-4)=12 | | 24=4n+4+1n | | 2/3x=x+5 |

Equations solver categories