(82/5)g=12

Simple and best practice solution for (82/5)g=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (82/5)g=12 equation:



(82/5)g=12
We move all terms to the left:
(82/5)g-(12)=0
Domain of the equation: 5)g!=0
g!=0/1
g!=0
g∈R
We add all the numbers together, and all the variables
(+82/5)g-12=0
We multiply parentheses
82g^2-12=0
a = 82; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·82·(-12)
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{246}}{2*82}=\frac{0-4\sqrt{246}}{164} =-\frac{4\sqrt{246}}{164} =-\frac{\sqrt{246}}{41} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{246}}{2*82}=\frac{0+4\sqrt{246}}{164} =\frac{4\sqrt{246}}{164} =\frac{\sqrt{246}}{41} $

See similar equations:

| -3b-2b=24-9b | | 2(3n-2)+20=40 | | -3b+2b=24 | | 4/2=x/1 | | -0,52=(x-40)/10 | | 4(a-1)=0.5(8a-8 | | 7x-3(x-6)=2(x-4)+6 | | -18x+-1=15x+-13 | | -88+z=-88 | | 18x+-1=15x+-13 | | 11x+11=-7x | | 7(v-9)=-4v+14 | | 0,01=(x-240)/80 | | -8.94=5.25s-2.01 | | 1/3xx9=16 | | -1,28=(x-240)/80 | | 5/11=25/x | | 6(v-2)-8v=4 | | x/0.2=30 | | n−2.2=3.1 | | 1/2f+9/4=7/4 | | 0.01^x=100 | | 3h-22=2 | | 38=-4(4+x)-6 | | 35(x+16)=2135 | | x/0.15=4.5 | | 35(x+16)=1960 | | 3-12b=15 | | 1/4m=-33/4 | | 11=5/x+2 | | 17.92+m=32.92 | | 8c/8=24/8 |

Equations solver categories