(82/5)g=78

Simple and best practice solution for (82/5)g=78 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (82/5)g=78 equation:



(82/5)g=78
We move all terms to the left:
(82/5)g-(78)=0
Domain of the equation: 5)g!=0
g!=0/1
g!=0
g∈R
We add all the numbers together, and all the variables
(+82/5)g-78=0
We multiply parentheses
82g^2-78=0
a = 82; b = 0; c = -78;
Δ = b2-4ac
Δ = 02-4·82·(-78)
Δ = 25584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25584}=\sqrt{16*1599}=\sqrt{16}*\sqrt{1599}=4\sqrt{1599}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1599}}{2*82}=\frac{0-4\sqrt{1599}}{164} =-\frac{4\sqrt{1599}}{164} =-\frac{\sqrt{1599}}{41} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1599}}{2*82}=\frac{0+4\sqrt{1599}}{164} =\frac{4\sqrt{1599}}{164} =\frac{\sqrt{1599}}{41} $

See similar equations:

| 9x+4=35 | | 45=5+f | | x/18+8=10 | | x=1+11/9 | | (14/5)n=3/5 | | 200=y*18^3/2 | | x/10+7=-7 | | -1(2r+23)=-17 | | 5t-25=18t | | 2.7x+1.53=-21.96 | | 2x-3/4=-6 | | 9x=24x+10 | | 8x-5-5x=25 | | 1000^-3/2=0,1^x | | 3x+(-4)=6x+4 | | 9(5y-2)=27 | | 4x+5-x=32 | | 7x-8-2x=37 | | 1/2x+4=-10 | | 9x-3/4=11/12 | | 5m+3-(-18m)=33 | | 5(2m-1)=3(m+10) | | h-8/3=-10 | | 2x-9+x=24 | | 2v+9=8v+24 | | 10h+5-h=-85 | | -10x-10-29=9x+18 | | 2x-2=-1x+2 | | 6x-24=7x-42 | | 4x+6-9=110 | | 1/24x+6-9=110 | | (98)^3x+12=1 |

Equations solver categories