(84)+(x+59)(x+51)=180

Simple and best practice solution for (84)+(x+59)(x+51)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (84)+(x+59)(x+51)=180 equation:



(84)+(x+59)(x+51)=180
We move all terms to the left:
(84)+(x+59)(x+51)-(180)=0
We add all the numbers together, and all the variables
(x+59)(x+51)-96=0
We multiply parentheses ..
(+x^2+51x+59x+3009)-96=0
We get rid of parentheses
x^2+51x+59x+3009-96=0
We add all the numbers together, and all the variables
x^2+110x+2913=0
a = 1; b = 110; c = +2913;
Δ = b2-4ac
Δ = 1102-4·1·2913
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-8\sqrt{7}}{2*1}=\frac{-110-8\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+8\sqrt{7}}{2*1}=\frac{-110+8\sqrt{7}}{2} $

See similar equations:

| 2x+10=-37 | | 4m-36=12 | | 2m+120=180 | | 1=x/18 | | -7-7r=8-2r+10 | | 24÷8=n | | -2+s=-10+2s | | 164=0.00000008(x+15.0033)(x-91)(x-91)(x-110)(x-150) | | 4(3x-2)=8x-28# | | -4.62+3g=9.13+5.5g | | A=2x4x4 | | m-5+10m=9m+9 | | 5x+40=33 | | -2-5b=-3b+4 | | 10-10c=-5c-10-10c | | 4x=3x/5 | | -7(7+6x)=-7(3-3x)-217 | | x,3x+48=180 | | -9q-6=10-7q-2 | | 7^x+10=8^-4x | | 18=u+7 | | 2x+10=4×+20 | | 0.85x=221 | | 9=2x=1x+x | | 5x-22+2x=90 | | 8+2r=6r | | (54​ )x+8=12 | | 4m+10-4=-14 | | 10/k=5/3 | | -4+4=-6t-10 | | 4t=3t-3 | | 5g-3=6g+2 |

Equations solver categories