If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(89/10)-(33/10)j=-14-8
We move all terms to the left:
(89/10)-(33/10)j-(-14-8)=0
Domain of the equation: 10)j!=0We add all the numbers together, and all the variables
j!=0/1
j!=0
j∈R
-(+33/10)j+(+89/10)-(-22)=0
We add all the numbers together, and all the variables
-(+33/10)j+22+(+89/10)=0
We multiply parentheses
-33j^2+22+(+89/10)=0
We get rid of parentheses
-33j^2+22+89/10=0
We multiply all the terms by the denominator
-33j^2*10+89+22*10=0
We add all the numbers together, and all the variables
-33j^2*10+309=0
Wy multiply elements
-330j^2+309=0
a = -330; b = 0; c = +309;
Δ = b2-4ac
Δ = 02-4·(-330)·309
Δ = 407880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{407880}=\sqrt{36*11330}=\sqrt{36}*\sqrt{11330}=6\sqrt{11330}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11330}}{2*-330}=\frac{0-6\sqrt{11330}}{-660} =-\frac{6\sqrt{11330}}{-660} =-\frac{\sqrt{11330}}{-110} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11330}}{2*-330}=\frac{0+6\sqrt{11330}}{-660} =\frac{6\sqrt{11330}}{-660} =\frac{\sqrt{11330}}{-110} $
| 5a^2-7=78 | | 120+17m=341 | | 60+17m=366 | | 30n-75=375 | | 35n-210=315 | | 35n-210=215 | | 3n+4.75=24.25 | | 3x-58=32 | | 5(h−4)=8 | | 26=4-2(x-3) | | v3/9+1=25 | | 24x^2+26x-35=0 | | 9=3n=33 | | 3=2v | | 9x+111=119 | | 1/2y+6=1/9y | | -2x+5=123 | | -9n=10 | | 3x/2+5/3=-7x/4 | | 7x+2=4x+28 | | 9x=1/2x^2+40 | | 52/x=-6,5 | | 3x-(2x+1)=-12 | | x/4=112,5 | | 4x^2-13=163 | | 240=112-2(12x+16) | | p^2-4p+100=0 | | (w-4)^2+3=15 | | 34/x=8,5 | | x^2-12x+36=-2 | | x+1/5(x-1)=1 | | 5k-4-2k+1=8k+2 |