If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8w)(5w+2)=0
We multiply parentheses
40w^2+16w=0
a = 40; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·40·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*40}=\frac{-32}{80} =-2/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*40}=\frac{0}{80} =0 $
| 4(5+2x)=108 | | -4(3+2x)=-52 | | 6(7+x)=78 | | N=180°-2x-x | | x-2.34=5 | | 2(-4x-13)=37+13+13x | | a/21=4/3 | | 9x^2-84x-96=0 | | 9x2+9=27 | | 2x+0.7=5x+7 | | 12.4+0.8x=8.8 | | y=100⋅1.25 | | -2(2x+5)=3x-3 | | 4y-8/2y-4=2 | | x(2x-15)=0 | | 4(4x–14)–14x+1=–2(–x+19) | | 4x+30=9x-7 | | 4(2g+1)=36 | | 20-5+n=15 | | 6.4c+0.6=18.4 | | n/3+18=21 | | X^2+25x-175=0 | | 2a-4=(-10) | | -7x-(-3)/7=15 | | 3s+4=30 | | 16x+4=-6-2x | | (x+1/11)+(2x+1/7)=(7x-4/22)+(x+4/14) | | −6(2y+2)=12 | | n/5-8=10 | | n/6-1=4 | | 4(v-2)-7v=-11 | | 4(2r-)=-2(3r+16 |