(8x)(4,9x)=84

Simple and best practice solution for (8x)(4,9x)=84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x)(4,9x)=84 equation:



(8x)(4.9x)=84
We move all terms to the left:
(8x)(4.9x)-(84)=0
We add all the numbers together, and all the variables
8x(+4.9x)-84=0
We multiply parentheses
32x^2-84=0
a = 32; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·32·(-84)
Δ = 10752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10752}=\sqrt{256*42}=\sqrt{256}*\sqrt{42}=16\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{42}}{2*32}=\frac{0-16\sqrt{42}}{64} =-\frac{16\sqrt{42}}{64} =-\frac{\sqrt{42}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{42}}{2*32}=\frac{0+16\sqrt{42}}{64} =\frac{16\sqrt{42}}{64} =\frac{\sqrt{42}}{4} $

See similar equations:

| 7+12x=6x+11= | | 315=5x+x^2 | | 9x+10=16x-5 | | -3/x=9/10 | | x(0)=0 | | 9x-2=8x+6= | | y/4=7/11 | | (x-6)(x+2)=0. | | 30x+1=-1=31x= | | 9x+9=11x-9= | | 2=10*5t | | Y=17x+-8 | | 11x-3=3+10x | | 5x-40+4=-5x+7 | | (3x)^2/8+2=30 | | 18x-6=14x+4= | | -22/x-4=-11/x | | 21+6r=3r+3(7r-5) | | 35x-3=17x+1= | | (3x)^2+3=30 | | x+5.96=7.91 | | 14x+11=15x+5= | | -8-8k=-6(6+6k) | | 33x+1=11x+3 | | u+3.33=9.98 | | -8-r=-8+4r-5r | | -4/3v+4/5=-v-7/3 | | X/5-3=x/4 | | -1/2a-4=4 | | 35=y/2+16 | | 5x+9=1+6x+5 | | {3,5,7}.9+x=14 |

Equations solver categories