(8x+13x)*13x=(7+17)*17

Simple and best practice solution for (8x+13x)*13x=(7+17)*17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x+13x)*13x=(7+17)*17 equation:



(8x+13x)*13x=(7+17)*17
We move all terms to the left:
(8x+13x)*13x-((7+17)*17)=0
We add all the numbers together, and all the variables
(+21x)*13x-(24*17)=0
We add all the numbers together, and all the variables
(+21x)*13x-408=0
We multiply parentheses
273x^2-408=0
a = 273; b = 0; c = -408;
Δ = b2-4ac
Δ = 02-4·273·(-408)
Δ = 445536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{445536}=\sqrt{144*3094}=\sqrt{144}*\sqrt{3094}=12\sqrt{3094}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3094}}{2*273}=\frac{0-12\sqrt{3094}}{546} =-\frac{12\sqrt{3094}}{546} =-\frac{2\sqrt{3094}}{91} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3094}}{2*273}=\frac{0+12\sqrt{3094}}{546} =\frac{12\sqrt{3094}}{546} =\frac{2\sqrt{3094}}{91} $

See similar equations:

| (+27x^2-18x+12x-8)(3x-2)=180 | | 20j−18j=14 | | 15/6m+7=14 | | (9x+4)(3x-2)(3x-2)=180 | | (9x+4)(3x-2)=180 | | 4/7=m/28 | | F(x)=–x^2-7x-5 | | -14(d+3)=14 | | x=2/4(5x-4)=4x | | T=190+40w | | T=350+25w | | x^-3=118 | | 5x+19=45 | | r–17.1=−4.8* | | 900 =(n+2)180° | | 6(v+6)=72 | | 45=13x+19 | | 3x7-x=21 | | u/4-5=-1 | | 6(3k-4)=18k-24 | | 3p^2–40p+13=0 | | -14=1-5x | | -6(y+7)=-6 | | 4/15=1/4x | | 59=6x-5 | | 23x=9x | | 97-x=45 | | 19x+–9x=20 | | 3-5u=43 | | 11x=x^2+28 | | 4x-2=(x+2)^2-6 | | t+4=-t-4 |

Equations solver categories