If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x+3)(2x-5)-(3x+5)(3x-5)=22x-10
We move all terms to the left:
(8x+3)(2x-5)-(3x+5)(3x-5)-(22x-10)=0
We use the square of the difference formula
9x^2+(8x+3)(2x-5)-(22x-10)+25=0
We get rid of parentheses
9x^2+(8x+3)(2x-5)-22x+10+25=0
We multiply parentheses ..
9x^2+(+16x^2-40x+6x-15)-22x+10+25=0
We add all the numbers together, and all the variables
9x^2+(+16x^2-40x+6x-15)-22x+35=0
We get rid of parentheses
9x^2+16x^2-40x+6x-22x-15+35=0
We add all the numbers together, and all the variables
25x^2-56x+20=0
a = 25; b = -56; c = +20;
Δ = b2-4ac
Δ = -562-4·25·20
Δ = 1136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1136}=\sqrt{16*71}=\sqrt{16}*\sqrt{71}=4\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{71}}{2*25}=\frac{56-4\sqrt{71}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{71}}{2*25}=\frac{56+4\sqrt{71}}{50} $
| 6x+2=5×+4 | | 7x2+56x=0 | | 12.08+5/24=x | | 2(2x+3)=6x-7 | | 1/10+1/20+1/30+1/40+12.08=x | | 12.08+24/5=x | | -6×+2=-5x+4 | | 0.2y+5/3=26/3-y | | B(x)=50.75-0.09x | | 2.85+2.7=8.3+x | | w^2+28w+46=0 | | -0.2a=48 | | x=(32/(3x+2) | | x^2+x^2+5=30 | | 2x^2+4x=336 | | 2b+24=143 | | 8x+9-12x=4x+3-3x | | (X+7)×x=120 | | 11x-10=-11×-208 | | 4u-39=8u-82 | | 3x-15-2x+10=90 | | (2x^2+4)/2=168 | | 3x^2-9x=5 | | 9^×-1-2x3^x-27=0 | | 55.8=4.5x | | 25x^+35x+12=0 | | 4a+6=5a+5 | | 55.8/4.5=x | | 2(2x+27)=5x | | 2x+1=(5)-8 | | 15x-30x^2=0 | | -3x-4=3x+5 |