If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x-1)(5x+23)=180
We move all terms to the left:
(8x-1)(5x+23)-(180)=0
We multiply parentheses ..
(+40x^2+184x-5x-23)-180=0
We get rid of parentheses
40x^2+184x-5x-23-180=0
We add all the numbers together, and all the variables
40x^2+179x-203=0
a = 40; b = 179; c = -203;
Δ = b2-4ac
Δ = 1792-4·40·(-203)
Δ = 64521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64521}=\sqrt{9*7169}=\sqrt{9}*\sqrt{7169}=3\sqrt{7169}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(179)-3\sqrt{7169}}{2*40}=\frac{-179-3\sqrt{7169}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(179)+3\sqrt{7169}}{2*40}=\frac{-179+3\sqrt{7169}}{80} $
| 2x+2=4-5x | | 5x-3(2x-4)=7x+16 | | 0.6(y-0.2)=0.2(y-1) | | g-16=5 | | 9a+15=10a- | | 4(x+2)=(2×15) | | 8-v=15 | | 38-3/4x=36-1/2x | | 7(t+3)=56 | | 6×3=(z×5)–(z×2) | | 2x+12=4x+5 | | -7/9w=28 | | 4(x+2)=2(2×15) | | 1.045s+0.068=15.743 | | 3x+112=7x+40 | | 3/4x+18=18 | | 10w2+40w=0 | | X^2+x=172 | | 24h+45=810 | | 5(2x/3-3x/5)+1=2x-2(x-1) | | 3/4x=9=18 | | 8y=444 | | 5/8=3/4b-7/12 | | 4x/10-x=x/10-9/2 | | x^2+5x+5/4=0 | | Y=1.75x+3 | | |3x-4|=22 | | -22=-5x+35+2x | | 4(x-8)+2=2x+7x-5 | | 5=(4x*(4x))-2.3x | | -1÷3y-6=-11 | | 5=4x^-2.3x |