(8x-3)(2+x)+(8x-3)(x-7)=0

Simple and best practice solution for (8x-3)(2+x)+(8x-3)(x-7)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x-3)(2+x)+(8x-3)(x-7)=0 equation:



(8x-3)(2+x)+(8x-3)(x-7)=0
We add all the numbers together, and all the variables
(8x-3)(x+2)+(8x-3)(x-7)=0
We multiply parentheses ..
(+8x^2+16x-3x-6)+(8x-3)(x-7)=0
We get rid of parentheses
8x^2+16x-3x+(8x-3)(x-7)-6=0
We multiply parentheses ..
8x^2+(+8x^2-56x-3x+21)+16x-3x-6=0
We add all the numbers together, and all the variables
8x^2+(+8x^2-56x-3x+21)+13x-6=0
We get rid of parentheses
8x^2+8x^2-56x-3x+13x+21-6=0
We add all the numbers together, and all the variables
16x^2-46x+15=0
a = 16; b = -46; c = +15;
Δ = b2-4ac
Δ = -462-4·16·15
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1156}=34$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-34}{2*16}=\frac{12}{32} =3/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+34}{2*16}=\frac{80}{32} =2+1/2 $

See similar equations:

| 3k2=8k+8 | | -31+x=14 | | 100-20x+x^2=4x^2 | | 3(2x-4)=2(x-10) | | 7÷x-6=3 | | 10x^2-7=13 | | 42=3/2w | | 5x+40=2x-15x-1 | | 5.3x+14.9=4x+27.9 | | 5.3 x+14.9=4x+27.9 | | 11x+29=5x+95 | | x-0.12x=10 | | 32=x-2x | | 10x=+5 | | 5u/5=12 | | 4x^2=9/64 | | 100x−5=90 | | 100x−5=90x | | 12(5x)=60 | | 7x-12=8x+11 | | 1/x^2=1+x^2 | | ?x5=0.02 | | 1/x=1+x | | 2(3x+4)=4x-3 | | 4x−5=21−9 | | 4x−5=21−9x | | (4x-7)-(2x+8)=0 | | 4(x-8)-7(3x+2)=0 | | 4.75=z/2 | | 12=3x-45 | | 4x+30=100 | | X-(4+2)x-3+4+1=0 |

Equations solver categories